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ABSTRACT 
 
 
Fault tolerance is explored for spacecraft computers employing Field-

Programmable Gate Arrays (FPGAs).  Techniques are investigated for tolerating Single 

Event Upsets (SEUs) caused by radiation in the space environment.  A new architectural 

approach is proposed for achieving SEU tolerance that minimizes power and size 

overhead costs by reducing the precision with which error checking is done.  This 

Reduced Precision Redundancy (RPR) approach is compared to the traditional Triple 

Modular Redundancy (TMR) method.  A methodology is presented for quantifying the 

costs and benefits of various performance factors, and thereby determining optimal 

design solutions.  This methodology considers reliability as a performance factor that can 

be traded-off against factors such as power, size and speed. 

An SEU simulation system is developed for studying the effect of SEUs on actual 

FPGA circuits.  Live proton radiation testing and computer-controlled fault injection 

simulations demonstrate the effectiveness of RPR and TMR.  Computer simulations of 

power usage demonstrate the savings achieved with RPR.  RPR is as reliable as TMR 

while requiring 1/3 to 1/2 as much power.  The effect of imprecise computations that may 

be produced by an RPR system is studied.  An image processing application illustrates 

the type of problems for which RPR can be applied effectively. 
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EXECUTIVE SUMMARY 
 
 

Spacecraft computers must operate reliably despite their harsh radiation 

environment.  High-energy protons and other radiation sources cause permanent damage 

to electrical components as well as transient faults in circuits.  Although technologies 

exist for producing “radiation hardened” devices that are less vulnerable to permanent 

damage, modern digital electronics are very susceptible to transient errors. 

One of the most common manifestations of transient errors is called a single event 

upset (SEU), or “soft error.”  This research investigates SEU fault tolerance for a 

relatively new hardware technology known as field-programmable gate array (FPGA).  

Due to their unique design, FPGAs require innovative approaches to fault tolerance.  

Triple modular redundancy (TMR) is commonly used to ensure reliable operation.  

However, TMR is very costly in terms of chip area and power consumption.  This 

research develops SEU fault-tolerant solutions that use less power than TMR. 

This dissertation presents a new fault-tolerant architecture for FPGA circuits 

called reduced precision redundancy (RPR).  RPR is suitable for protecting FPGA 

circuits on spacecraft against SEUs and achieves improved efficiency by applying 

redundancy in only the most numerically significant portions of a circuit.  This concept, 

though based on ideas from software engineering, is unique within the FPGA fault-

tolerant community.  RPR is fundamentally different than TMR because it recognizes 

that the individual output data bits from a numerical computation often have varying 

levels of importance.  RPR is designed to protect only the most significant data bits, 

thereby avoiding numerically large data errors.  This research shows that the RPR 

architecture consumes much less chip area and power than TMR designs.  In fault-free 

conditions it provides full-precision results, but when SEUs affect the circuit it produces 

lower-precision, yet acceptable, output data. 

Another unique concept presented in this dissertation is the development of a total 

performance metric (TPM) for optimizing a system based on numerous performance 

criteria.  The idea behind TPM is that each design parameter (e.g., speed, reliability, size, 

power, etc.) can be grouped as either a cost or a benefit.  These cost and benefit factors 



xx 

are then related to one another through scaling factors that represent the relative 

importance of each parameter.  This results in a quantitative method for determining an 

optimal design solution by maximizing the total benefit minus cost. 

This research explores the effectiveness of the TMR and RPR architectures by 

developing and testing circuits on actual FPGA devices.  Most of this work is performed 

with implementations of the Coordinate Rotation Digital Computer (CORDIC) algorithm 

targeted for the Xilinx Virtex XQVR600, though some tests utilize the Virtex-II 

XC2V6000 device.  The XQVR600 devices tested are part of the NPS Configurable Fault 

Tolerant Processor (CFTP) space experiment.  Results of high-energy proton radiation 

testing with the CORDIC and other circuits are presented.  In addition to proton testing, 

an automated SEU simulation system is developed, enabling detailed and comprehensive 

studies of SEU effects without requiring actual radiation sources.  This simulator is used 

to characterize the SEU tolerance of TMR and RPR versions of the CORDIC circuits.  

Although TMR masks faults affecting any of the output data bits, RPR is designed to 

ensure accuracy of the most significant bits of the output data.  In terms of these two 

distinct goals, the RPR designs tested here are +/- 30% as effective as the TMR designs. 

In addition, power simulations are performed to determine the power cost of 

implementing TMR and RPR architectures.  Though the relative power usage of RPR and 

TMR depends on many factors, such as the level of precision incorporated into the RPR 

calculations, the CORDIC circuits tested here show that TMR requires between two and 

three times as much power.  The substantial power savings possible with RPR is 

justification for accepting some degradation in SEU immunity and/or numerical 

precision. 

Finally, image processing with the discrete cosine transform (DCT) is used as an 

example application for studying the effects of SEU-induced data errors and imprecision 

in numerical calculations.  Subjective and objective image quality assessments are used 

to judge the relative importance of preventing errors and maintaining high precision.  

This image processing example demonstrates that decreased precision in an RPR design 

causes little performance loss.  Thus, it is concluded that RPR is an efficient method for 

achieving SEU tolerance in FPGA circuits. 



1 

I. INTRODUCTION 

A. OVERVIEW 
Over the past decade the tremendous advances in reconfigurable circuit 

technologies have spurred considerable interest in using devices such as field-

programmable gate arrays (FPGAs) on spacecraft [1], [2], [3].  Although radiation effects 

are a concern when dealing with any spacecraft electronic system, they are especially 

troublesome for certain FPGA technologies [1], [4], [5].  In the last several years, an 

increased awareness of FPGA radiation susceptibilities has spurred development of 

various mitigation methods, which have proved to be quite effective [5], [6], [7], [8].  

However, most of this work has not considered the impact of these methods on a 

system’s power consumption.  Power is also an important concern for spacecraft 

computing and FPGAs generally require more power than application specific integrated 

circuits (ASICs) to perform comparable functions [9], [10].  Radiation susceptibility and 

power consumption are impediments to the widescale use of FPGAs for spacecraft [3], 

[9], [10].  This dissertation investigates a new technique for mitigating radiation effects 

while minimizing the impact on a spacecraft’s power budget.  The methods proposed in 

this research offer substantial benefits for various computing problems for both FPGA 

and non-FPGA systems. 

  

B. BACKGROUND 

1. Computing In the Space Environment 
Since the launch of Sputnik I/II in 1957 and Explorer I in 1958, satellites have 

grown tremendously in importance for both military and civil uses.  Satellites are widely 

used in communications, navigation, weather monitoring, earth remote sensing, missile 

warning, and many other applications.  Computers are an integral part of all spacecraft.  

Although the earliest spacecraft were simpler and much less capable than today’s 

spacecraft, even the first satellites had rudimentary computing systems.  By 1962 NASA 

was developing rather sophisticated computer systems for their space projects [11].  

Virtually all satellites require some on-board processing capability, whether for complex 

data processing or simple satellite control functions. 
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The demand for satellites with increasingly complex functionality creates a need 

for greater on-board computer processing capacity [12].  For many spacecraft, the amount 

of data collected by on-board sensors greatly exceeds the available downlink bandwidth 

[13].  In data-intensive applications, such as synthetic aperture and imaging radars, the 

ability to process large amounts of raw data can significantly reduce the downlink 

requirements [14], [15].  A prime example demonstrating the benefits of on-board 

processing is Los Alamos National Lab’s current Cibola spacecraft program [16].  A 

primary mission of the Cibola spacecraft is to analyze lightning events using a 

reconfigurable radio operating at VHF and UHF frequencies.  This system requires 2.4 

Gbps processing capacity, which is achieved using 9 Virtex XQVR1000 FPGAs 

operating in parallel on the spacecraft [2].  If all data processing were performed on the 

ground, it would be extremely difficult to support downlink of the raw data at such high 

speeds.  In fact, Cibola’s downlink capabilities are limited to 38.4 kbps and 4 Mbps links, 

far less than the 2.4 Gbps raw datastream.  Furthermore, on-board processing enables 

persistent global coverage since the finished data products will likely be small enough to 

store on-board in between direct line-of-sight communication periods, whereas the raw 

data is far too voluminous for on-board storage.  In this and many other modern space-

based missions, spacecraft processing is absolutely vital. 

The tremendous cost of launching systems into space imposes stringent design 

constraints on the size, weight, and power of satellites.  Satellites must operate remotely 

for long periods of time.  High reliability is essential, as most are not serviceable after 

launch (the Hubble Space Telescope is the most noteworthy exception).  These 

challenges, common to all spacecraft, contribute to long development schedules and high 

costs.  Due to the large investments associated with spacecraft programs, there is 

tremendous pressure to make the systems highly reliable.  This need for reliability 

lengthens the procurement process and further drives up the costs, perpetuating the cycle.  

In addition, these factors create an obsolescence problem.  By the time a satellite is ready 

to launch, technology has advanced far beyond what is integrated into the satellite.  By 

using out-dated technology, satellite programs also suffer from a lack of commercial 

support for obsolete equipment and spare parts. 
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The space environment also presents considerable challenges to spacecraft 

electronics.  Modern electronic systems, and computers in particular, are sensitive to the 

high radiation levels in space.  In the early days of spacecraft computing, there was little 

concern about radiation effects.  For example, a 1966 paper acknowledged the potential 

hazards of the space environment but concluded that, “data have shown no errors that 

could be attributed to interference from outside the spacecraft.” [13]  However, as solid 

state electronics rapidly advanced in capabilities and shrank in physical dimensions, 

radiation effects became an issue for computer systems.  By 1975 there was some limited 

evidence of radiation-induced computer faults on spacecraft.  By 1978 such effects were 

even observed in some terrestrial systems and the radiation effects community began in 

earnest to explore this phenomenology [17].  

Radiation sources, such as highly energetic particles trapped in the earth’s 

magnetosphere, can cause permanent damage to electrical components as well as 

transient faults in circuits.  Permanent damage to electronic devices can result from 

various physical phenomena, but is primarily caused by accumulation of trapped charges 

from ionizing radiation and atomic displacement from non-ionizing radiation [17].  

Temporary effects are primarily caused by energetic particles that locally generate a large 

number of excess charges in a device and thereby affect signal values in a circuit [17], 

[18].   Spacecraft computer systems must operate reliably in spite of these challenges. 

 

2. Single Event Upset (SEU) 
Spacecraft electronics are exposed to substantially more damaging radiation than 

terrestrial systems, which are protected in large part by the earth’s atmosphere and 

magnetosphere [17].  This radiation can lead to both permanent and temporary effects.  

While protecting electronics against permanent damage is very important, this research 

focuses on temporary effects.  The majority of temporary, non-persistent perturbations in 

spacecraft electronics occur nearly instantaneously and are caused by individual high-

energy particles that affect a localized region in the semiconductor device.  The term 

“single-event-transient” describes these rapid and isolated events. 

Single-event-transient (SET) effects, such as the well-known single event upset 

(SEU), can be caused by any undesirable energy source, such as corpuscular radiation or 
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electromagnetic interference.  Clark [19] presents succinct definitions of SET and SEU: 

“SET…is an unintended analog pulse” and “SEU occurs when an SET causes a bit-flip 

error in a memory element.”  SET describes a physical process that occurs in an electrical 

circuit.  Depending on many factors, such as circuit design and precise timing of SET 

events, this process may or may not lead to an SEU.  Similarly, an SEU may or may not 

lead to erroneous data at the system output [19].  This research is primarily concerned not 

with the physical causes and effects of SETs, but rather with the consequences of SEUs 

on logic circuits. 

Transient faults are also commonly called Single Event Effects (SEEs) [3].  

Within the category of SEE, some researchers differentiate between a Single Event 

Functional Interrupt (SEFI), which causes the device to “lock-up” and cease functioning 

until a complete reset or power-cycling is performed [3], [5], and an SEU, which causes a 

bit-flip.  For simplicity and consistency with most of the literature, the term SEU 

henceforth refers to all transient-induced logic faults. 

SEUs are a serious concern for space systems.  Exposure to high radiation levels 

leads to SEUs in spacecraft computers that can cause erroneous results.  Without 

mitigation of SEUs, the consequences of such errors can range from relatively benign 

data errors to catastrophic effects such as loss of satellite control and functionality [3], 

[20].  Considerable effort is spent to mitigate SEUs in modern satellite systems through 

techniques such as shielding, error detecting and correcting codes, and hardware 

redundancy. 

Concern over SEUs and their impact is not limited to spacecraft systems.  In fact, 

there is growing concern that terrestrial computers are becoming more prone to radiation-

induced faults.  Demand for high-performance processing capabilities drives 

requirements for smaller and more sophisticated computers.  Many of the factors that 

improve computing performance also make state-of-the-art systems increasingly sensitive 

to even low levels of radiation [17], [21].  Alpha particle radiation from naturally 

occurring radioactivity in packaging material has long been known to cause SEUs, also 

known as “soft errors” [17].  Shrinking integrated circuit feature sizes, operating voltages 

and noise margins exacerbate the SEU problem.  Thus, logic upsets caused by alpha 
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particles, cosmic rays and other radiation sources are becoming more of a concern for 

ground-based commercial systems [21], [22]. 

Therefore, technologies are needed to ensure that both spaceborne and terrestrial 

computers can be highly reliable and still meet their speed, size, weight, power, cost and 

other design constraints.  Techniques that improve the SEU immunity of electronics are 

of significant value in military, civilian, and commercial applications.  Increasingly, SEU 

tolerance is becoming a common feature for many digital systems. 

 

3. Field-Programmable Gate Array (FPGA) 
Reconfigurable circuit technology is revolutionizing the computing industry.  

Traditionally, hardware consisted of fixed circuit configurations and software provided 

much of a system’s design flexibility.  Modern configurable logic structures allow 

hardware circuits to be reconfigured post-production and even during operation.  

Programmable logic devices (PLDs) first appeared in the 1970s with the introduction of 

the PAL and quickly evolved into numerous products with names such as PLA, GAL, 

PROM, EPROM, and EEPROM [23].   However, these earlier technologies had limited 

utility because they offered relatively small gate counts, had fixed interconnect structures, 

and were typically only one-time programmable.  The advent of FPGAs in 1985 [24] 

established a configurable circuit technology that could perform even complex functions 

and maintain great flexibility.  The most distinguishing traits of FPGAs compared to 

other technologies are their relatively large numbers of logic gates and very flexible 

interconnect architecture.  FPGAs have benefited from rapid advances in VLSI 

technologies and now rival ASIC and general purpose microprocessors in numerous 

applications [25]. 

The tremendous advantages of reconfigurable circuits have prompted great 

interest from the space computing community.  The first published description of an 

FPGA used in space concerned the SAMPEX spacecraft, launched in 1992 [26].  

Although the earliest FPGA devices were built for one-time programmability, there is 

now more demand for reprogrammable devices, such as those using Static Random 

Access Memory (SRAM) cells for storing the circuit configuration.  Other technologies 

are also widely used to construct FPGAs.  For example, anti-fuse devices are configured 
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by applying high-voltage to selected nodes in order to change them from their initial 

high-impedance state to a low-impedance “fused” state, in much the same way as 

PROMs are programmed.  Spacecraft have used anti-fuse FPGAs for many years and 

have recently begun to utilize SRAM-based devices [3].  This research focuses on the 

SRAM devices and does not address those using anti-fuse and similar one-time 

programmable technologies.  Thus, throughout this dissertation the term FPGA implies 

SRAM-based devices only.  Over time, these devices will likely gain broader acceptance 

and become standard components for on-board computing. 

The flexibility of SRAM-based FPGAs offers numerous advantages.  First, a 

single FPGA device can perform multiple hardware functions that would otherwise 

require multiple devices.  By loading different circuit designs onto the chip when needed, 

one can achieve broad functionality with fewer parts than conventional systems.  In 

SRAM-based devices this switching back and forth among configurations can be 

accomplished very quickly, on the order of a millisecond.  Another key advantage is the 

ability to correct design deficiencies, compensate for permanent hardware failures, and 

make enhancements long after system deployment.  Software and hardware are prone to 

design errors or oversights ( “bugs”).  Design errors are sometimes discovered long after 

initial production.  For example, NASA’s Cassini-Huygens mission to Saturn contained a 

critical communication design flaw that wasn’t discovered until the probe was over 

430,000,000 km from earth [27].  An oversight related to the Doppler-shifted datastream 

coming from the Huygens probe during descent towards the moon Titan would have 

caused the Cassini spacecraft to receive only a scrambled version of the data.  While 

minor changes to on-board firmware could have fixed this problem, the only option after 

launch was to redesign the spacecrafts’ flight paths, thereby losing some of the mission’s 

scientific value, to minimize the Doppler effect.  With FPGAs, the hardware can easily be 

reconfigured even after launch to correct or compensate for any such problems. 

Unfortunately, reconfigurable SRAM-based FPGAs are susceptible to SEUs.  

SEUs can cause data bit upsets, as in other circuit technologies, but can also affect circuit 

operation since the circuit configuration is stored in volatile memory.  Thus, fault-tolerant 

schemes for FPGA circuits must compensate for both data and configuration memory 
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upsets.  Error detection is an important aspect of the fault-tolerant designs explored in 

this research, as it enables the correction of both types of upsets. 

When FPGAs, or the systems in which they are used, experience permanent 

physical damage, the FPGAs can be reprogrammed to avoid the faulty components [28].  

For example, faults within the FPGA can be circumvented by rerouting the circuit.  

Furthermore, the I/O pins or the circuit behavior within the FPGA can be modified to 

compensate for problems outside the FPGA.  This reprogrammability also allows for 

future improvements to the algorithms and design.  The popularity of spiral development 

(the process by which a system is fully developed over several product generations with 

ever-increasing capabilities) in high-tech programs indicates that this feature of FPGA-

based systems has tremendous value.  In addition, FPGAs can accelerate development 

time compared to the traditional approach of building custom ASIC chips for complex 

electronic systems.  FPGAs can be readily purchased on the commercial market but can 

be fully customized when assembled into the full system. 

 

4. Power Consumption 
Power-efficiency in electronic systems is becoming increasingly important as 

computers find more applications in small and power-limited systems, such as cell 

phones and smart cards [29].  Power consumption also presents thermal issues related to 

heat dissipation in devices both very small (like laptop computers) and very large (such 

as mainframe supercomputers) [30].  Especially in the rapidly growing portable 

electronics industry, there is considerable interest in developing energy efficient designs 

[31].  One of the reasons that FPGAs have not supplanted ASICs more quickly is that 

they typically use significantly more power [10]. 

Power generation and energy storage are significant limitations in remote systems 

like spacecraft.  Virtually all current satellites use solar cells for power generation.  These 

power sources are limited by the collection area available for body or panel-mounted 

solar cells.  Even on large spacecraft such as the International Space Station with 

hundreds of square meters of solar panels, power is limited to 10’s of kilowatts.  The 

most powerful commercial satellites produce roughly 20 kW, but small satellites such as  
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NPSAT have power budgets of only 10s of watts that must be shared among the various 

subsystems.  Spacecraft electronics must be specifically designed for these extremely 

low-power conditions. 

Spacecraft typically use batteries for energy storage, though momentum wheels 

and other technologies have been investigated.  Issues with energy storage methods 

include total capacity, conversion efficiency, peak discharge rate and longevity.  For 

example, the battery system on PANSAT, the first satellite built at NPS, was the first 

major subsystem to fail, thereby cutting short the lifetime of this otherwise healthy 

satellite [32]. 

Thermal dissipation is also a major concern because common cooling techniques, 

such as convection with fan-driven airflow, do not work in the vacuum of space.  In 

addition, the temperature cycles that many spacecraft undergo due to fluctuating solar 

illumination further complicate the thermal balance inside spacecraft.  Removing heat 

from high-temperature computer chips on satellites often requires considerable effort.  

For example, careful thermal design was needed on the Cibola spacecraft to provide heat 

dissipation for several FPGAs consuming over 7 watts each [33]. 

 

C. MOTIVATION 
Spacecraft computers face the unique challenge of operating with a limited power 

budget and functioning reliably in a high radiation environment.  Numerous studies have 

examined trade-offs between size vs. speed, fault tolerance vs. size, power vs. speed, 

power vs. size, etc., for specific computation problems [34], [35], [36], [37], [38].  

Relatively little research has been done to examine power efficiency in fault-tolerant 

architectures.  Traditional approaches to fault tolerance assume that reliability is 

paramount and power consumption is a secondary concern [21].  However, Maheshwari 

[29] identifies both fault tolerance and low-power as “key objectives in the design of 

critical embedded systems.”  Another research team [4] suggests that in some 

applications it may be beneficial to trade off reliability for power.  This research explores 

these design trade-offs and presents a new approach for achieving high system reliability 

using minimal power. 
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Several key observations inspired this research project.  First, SRAM-based 

FPGAs, which offer great advantages for space computing, have unique failure 

mechanisms that render many common fault-mitigation techniques ineffective [4].  

Power is a major limitation in spacecraft computing, making reduced power consumption 

an important design goal.  Triple Module Redundancy (TMR), the most common fault-

tolerant technique for FPGAs, is very costly and is wasteful in many applications.  

Finally, many computational tasks can accept “flexible precision” without significant 

degradation.  This dissertation proposes a unique computing architecture called Reduced 

Precision Redundancy that is suitable for FPGAs and provides sufficient fault tolerance 

with minimal power consumption. 

 

D. CONTRIBUTIONS 
The primary contribution of this dissertation is the development of a new fault- 

tolerant architecture for FPGAs called Reduced Precision Redundancy (RPR).  This new 

architecture can be applied to a variety of computational tasks and minimizes the cost of 

hardware fault tolerance.  RPR is unique because it applies software-based fault tolerance 

concepts in a hardware fault-tolerant structure.  While other methods exist for building 

hardware fault tolerance with reduced overhead costs, RPR is unique because it prevents 

large data errors from propagating through the system.  Other low-cost approaches permit 

large and small data errors with equal likelihood. 

Second, this dissertation demonstrates that RPR generally provides better overall 

performance than TMR, considering both benefits (performance, reliability, etc.) and 

costs (chip area, power, etc.).  This research develops unique methods for determining the 

optimal balance between fault tolerance and resource usage. 

Third, this research produces a validated process for assessing SEU fault tolerance 

of RPR and other designs implemented on the Configurable Fault Tolerant Processor 

(CFTP) experiment’s Xilinx XQVR600 devices.  CFTP is an active research project at 

the Naval Postgraduate School (NPS) that is building two space experiments as part of a 

program investigating reliable and reconfigurable computing.  Part of this dissertation 

involved expanding the capabilities of an SEU simulation system developed at the Naval 
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Postgraduate School, enabling rapid and complete characterization of specific circuit 

designs.  Live testing at a radiation test facility validated the simulation system.  Finally, 

analytical methods were developed for assessing the severity of various error conditions 

in an RPR architecture. 

 

E. DISSERTATION ORGANIZATION 
Chapter II presents background material on fault tolerance for FPGAs and 

introduces the RPR architecture.  The chapter describes the characteristics of algorithms 

and applications that are well suited for use with RPR.  Chapter III describes approaches 

for reducing electrical power consumption in FPGA designs.  Chapter IV develops a 

quantitative method for determining how to best achieve a low-power and fault tolerant 

system.  While the focus of this research is on SEU fault tolerance and power 

consumption, the methodology is flexible and can be expanded to address a multitude of 

competing design goals.  Chapter V briefly describes the CORDIC algorithm and why it 

was used as the primary demonstration system in this research.  Chapter VI describes 

the SEU and power simulation environments and provides accurate predictions of RPR 

performance in radiation environments.  Chapter VII describes the proton radiation 

testing performed to validate the SEU simulation environment of Chapter VI.  Chapter 

VIII discusses some practical issues that must be addressed when creating an RPR 

circuit.  The chapter also examines an image compression problem as a case study for 

demonstrating the viability of RPR.  Chapter IX summarizes the dissertation and 

identifies areas for further investigation. 

 



11 

II. FAULT-TOLERANT DESIGN CONCEPTS 

A. FAULT TOLERANCE FOR FPGAS 
Parhami defines fault-tolerant computing as “ensuring correct functioning of 

digital systems in the presence of (permanent and transient) faults” [30].  For the 

purposes of this dissertation, it is important to distinguish between faults and errors.  

Faults are the undesired changes that occur in a physical circuit/device that may lead to 

incorrect operation.  Errors occur when a circuit produces incorrect output data [39].  

Faults, though undesirable, are not necessarily harmful.  Our intent is to prevent errors by 

properly managing faults. 

This research focuses on developing fault-tolerant techniques for FPGAs.  

Although computer fault tolerance in various forms has been investigated for over six 

decades [40], FPGAs have several unique features that necessitate new fault-tolerant 

methods for these increasingly important devices [41].  FPGAs used in spacecraft face 

additional challenges unique to the hostile operating environment of space. 

Although FPGAs have only become widely used in the last decade, there has been 

substantial research and development in fault-tolerant techniques for these devices.  

While it is important to consider all potential sources of faults when designing high-

reliability systems, this research focuses specifically on faults from SEUs and does not 

consider other failure mechanisms such as device burnout and power supply glitches. 

In SRAM FPGA technology, both the data being processed and the circuit 

function itself are stored in memory elements.  An SEU can flip a data bit, corrupting a 

portion of the data stream, or it can flip a configuration bit, causing the circuit to no 

longer behave in the intended manner [42].  Errors in an FPGA’s configuration memory 

can modify the circuit functionality and produce incorrect results, even if the stored data 

bits are correct.  Errors affecting circuit function, which are extremely disruptive, occur 

more frequently in modern FPGAs than data errors.  One study of the Virtex chips 

concluded that 91% of static upsets (i.e., those observed without a clocking signal) were 

attributable to the “configuration” bits stored on the device [43].  The authors in [3] note 

that user data latches comprise a relatively small percentage of SRAM latches in the 
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Xilinx 4000 chips and point to a test that found roughly 80 configuration upsets for each 

user data upset.  Configuration errors are the primary concern for this research, although 

protection against data errors is an important secondary objective. 

Conventional fault mitigation techniques are insufficient for dealing with the 

broad range of possible faults in FPGAs [4].  Fault models such as “single signal stuck-

at-0/1” and “stuck-open” do not adequately address the wide variety of possible 

malfunctions in FPGA circuits [44], [45].  Error detection and correction (EDAC) codes 

such as Hamming codes are effective for detecting and correcting small numbers of data 

errors in storage or transmission and to a limited extent in processing.  Such codes are 

extensively used in digital memory chips and communication systems.  However, 

configuration errors in FPGAs can easily exceed the capability of EDAC techniques.  

FPGA designs require unique solutions that provide fault tolerance against a wide range 

of potential data and configuration fault conditions. 

 

B. PRINCIPLES OF FAULT TOLERANCE 

1. Fault/Error Detection vs. Correction 
The first step towards fault-tolerant systems is fault and/or error detection.  

Without some means of determining that a fault exists in a circuit, there is no way of 

fixing that fault or performing error correction.  In some situations it may be acceptable 

to simply identify the presence of faults or errors.  For example, if only a few data 

samples in a sensor datastream are corrupted, one solution may be to simply flag errors 

and then discard the bad data.  In other situations, the data is too critical to be discarded 

and must be corrected, either in real-time or in post-processing.  Error correction is more 

difficult, but fundamentally relies on fault/error detection. 

 

2. Concurrent Error Detection and Checkpointing 
Concurrent error detection (CED) involves the discovery of faults/errors as part of 

the data computation process.  The goal with CED is for the circuit to flag errors before 

incorrect data is propagated through the system, thus maintaining “data integrity” [46].  

CED “is designed to detect the first error produced by a failure in the system and is 

therefore capable of detecting permanent and transient faults.” [47]  For hardware fault 
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tolerance, spatial redundancy with result checking is typically used, as shown in Figure 

2.1.  A common technique is a duplex system in which two modules compute the same 

function and the results are compared for equality.  A mismatch in the comparator signals 

that one of the modules (or the comparator) is faulty; thus providing fault detection but 

not error correction.  Temporal redundancy can also be used, however this adds 

considerable latency and often reduces system performance.  Most common fault-tolerant 

methods, such as TMR, are variants of the basic CED structure.  CED is an implicit 

feature of the fault-tolerant designs explored later in this dissertation. 

 

 
Figure 2.1 Basic Concurrent Error Detection (CED) Architecture (from [46]) 

 

Another technique that is common in software engineering, called 

“checkpointing” (or “roll-back and recompute”), applies an acceptance test verifying that 

each output is valid before passing on the result.  This acceptance test is based on some a 

priori knowledge of the function being calculated or properties of allowable outputs.  If 

an output is invalid, the processor “rolls back” and repeats the calculation using the 

original input.  This is in contrast to CED in which the process “rolls forward” when 

faults are detected instead of recomputing the original inputs. 

Checkpointing is popular in software designs, in part because it only requires a 

single processing element (usually the microprocessor) and enough memory to store the 



14 

system’s state between checkpoints.  However, checkpointing alone is not capable of 

correcting SEU faults in FPGAs.  As discussed earlier, the majority of SEU-induced 

faults affect configuration memory.  Configuration faults persist until the device is 

reconfigured to correct these faults.  Simply repeating the same calculation, as in 

conventional checkpointing, would only continue to produce erroneous results. 

Both CED and checkpointing methods lack fault correction, a crucial element for 

SEU fault tolerance in FPGAs.  Because FPGA configuration faults are both common 

and persistent, a means of removing such faults is essential [42].  The process of finding 

and fixing these faults is often called “configuration scrubbing,” or simply “scrubbing.” 

 

3. Configuration Scrubbing 
Configuration scrubbing can be described as “the transparent process of reloading 

the configuration bitstream so upsets are corrected.” [48]  In its simplest form, scrubbing 

involves periodic reconfiguration of the entire device to restore the chip to the desired 

configuration, regardless of whether or not any SEU faults exist [42], [49].  More 

sophisticated methods involve refreshing the configuration memory contents only when 

cued by some fault/error detector.   For example, the NPS Configurable Fault Tolerant 

Processor (CFTP) approach involves periodic reading of the configuration memory and 

only reloading the content when sensitive bit upsets (i.e., error producing configuration 

faults) or a certain number of non-sensitive upsets are detected.  In this context, the term 

configuration scrubbing includes both the reading and reloading functions. 

In conventional systems, this scrubbing process involves downtime while the 

device is reconfigured.  While this can degrade overall performance, modern Xilinx 

Virtex devices support a mode called “active reconfiguration” that permits the reading 

and writing of configuration bits concurrently with regular device operation.  The 

frequency of such a process might be determined based on an expected upset rate 

(number of upsets per second) or simply based on the fastest possible reconfiguration 

speed for the device (bits per second).  Faster reconfiguration is desirable since it 

minimizes the time during which output errors might persist, but continuous 

configuration scrubbing will consume additional power.  The minimum scrubbing cycle 

duration is determined by the speed of reading/writing configuration bits and the size of 



15 

the circuit to be scrubbed.  More sophisticated scrubbing techniques involve fault 

isolation to determine which specific portions of the chip require repair.  By pinpointing 

faults, the scrubbing process can be sped up considerably while minimizing power 

consumption. 

 

4. Redundancy 
Redundancy is essential for fault tolerance.  Without redundancy, a system’s 

reliability is limited by the product of the individual reliabilities of each subcomponent, 

as shown in Equation 2.1 [50].  In this equation Ri represents the probability that 

subcomponent i will function correctly at any given time.  This equation applies to 

systems in which components are connected in a serial fashion.  Like the links in a chain, 

failure of a single component can cause the entire system to fail. 

 ( ) ( )∏=
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When a system’s components are replicated and properly integrated in a parallel 

style, a failure in one component can be “masked” by redundant elements that continue to 

function properly.  This parallel structure can dramatically improve reliability as shown 

in Equation 2.2 [50]. 
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Figure 2.2 illustrates how these reliability functions depend strongly on the values 

of N and Ri.  The graph on the left shows how the overall reliability of a system of several 

components configured in a serial manner degrades rapidly as N increases.  Each curve 

represents a different individual component reliability, ranging from 0.91 to 0.99.   In 

order to construct highly reliable complex systems with many subcomponents, each 

component must be very reliable.  The graph on the right shows how a system with 10 

components (using the rightmost data points on the left graph as the baseline reliability) 

can be made more reliable through parallel redundancy.  Note that for the upper curve 

with double or greater redundancy, the “system of systems” is more reliable (>0.991) 

than any single component by itself (0.99). 
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Figure 2.2 Reliability of Serial Systems (left) and Parallel Redundant Systems (right) 

 

Reliability of computer systems can be improved through spatial redundancy, 

temporal redundancy, or a combination of the two.  Spatial redundancy is the most 

common means of enhancing hardware reliability.  It can be applied at a top level by 

replicating the entire system or at lower levels by replicating subcomponents.  EDAC 

techniques are a type of spatial redundancy that primarily resolve data errors.  Triple 

modular redundancy is a common method used for masking both logic and memory 

faults.  Temporal redundancy consists of multiple calculations that are performed in a 

time sequence before a final result is determined.  The checkpointing technique described 

earlier is a form of temporal redundancy.  

 

a. Configuring Redundant Components 
Another important observation is that redundancy is most effective when 

applied at the lowest possible level in a system.  The following figure shows two possible 

arrangements for a double redundant system with 5 serial elements.  The first 

configuration uses redundancy at the highest level with the entire system duplicated.  The 

second configuration applies redundancy to each element in the overall structure.   
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Assuming each component has a reliability of 0.95, the first configuration yields an 

overall reliability of 0.949 while the second configuration is much better with reliability 

of 0.988. 

 

 
Figure 2.3 Redundancy at System-Level (top) and Component-Level (bottom) 

 

b. Selective Redundancy 
Another important consideration in designing fault-tolerant systems is that 

redundancy should be applied where it can provide maximum gain for minimum cost.  In 

other words, a fault-tolerant design should be efficient.  While some form of redundancy 

is necessary to protect against SEUs, not all bits of information in a circuit have the same 

degree of importance.  Efficiency is achieved by applying redundancy to only the most 

important portions of the design. 

Though the idea of selective redundancy has existed for decades [39],  it 

has recently gained more attention from the FPGA fault tolerance community.  Several 

research projects [51], [52], [53] have looked at ways of identifying the most sensitive 

portions of FPGA circuit designs.  These sensitive elements, such as critical finite-state 

machines and feedback structures, can then be targeted for TMR protection using less 

overall redundancy.  While selective TMR can reduce overhead costs, it is typically less 

effective than full TMR.  Thus, there is a large trade-space for optimizing fault tolerance 

and overhead costs. 
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5. Complexity/Confidence Trade-offs 
The idea that complexity and confidence are opposing parameters is important in 

developing more efficient fault-tolerant designs.  This concept, shown on the left side of 

Figure 2.4, expresses the intuitive idea that as the complexity of a problem increases, so 

does the probability of making an error.  Therefore, one has less confidence in the 

accuracy of the result.  In computing systems, higher precision solutions require greater 

complexity.  The boxes in the graph represent component count, which was shown in the 

previous section to adversely affect reliability.  To produce highly precise information, a 

system must perform more calculations and handle more data.  This complex processing 

creates more opportunities for error – higher precision is associated with lower 

confidence.  Conversely, the data from simpler calculations is less precise but more 

reliable.  As one moves to the left on this curve, output data becomes more reliable but 

loses precision. The axis labeled “Complexity” can also represent precision, information, 

effort, size or power.  A simple circuit using only a few components requires relatively 

little chip area and power.  As the circuit is made more complex in order to generate more 

detailed results, it will require more area and power.  In addition, each new circuit 

element introduces new opportunities for faults and errors to occur. 

The pyramid shape on the right side of the figure shows one way of thinking 

about how a system is constructed.  The bottom of the pyramid contains many 

components, making these lower levels more complex but less reliable.  The top of the 

pyramid is more reliable, but with fewer components and less complexity these top levels 

cannot provide high precision results. 

 
 

Figure 2.4 Complexity-Confidence Relationship (left) and System Structure (right) 
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Consider, for example, the calculation of the trigonometric functions sine and 

cosine.  Given any angle, one can be certain that both the sine and cosine of that angle are 

in the range [–1, +1].  This is not very detailed information, but it comes with high 

confidence.  A simple hand calculation could improve the estimate of the sine and cosine 

values to perhaps within +/- 0.1 or better.  While the second estimate is more precise, its 

solution requires more calculations, making the estimate more prone to errors.  Therefore, 

we have less confidence in the more precise value.  For certain algorithms, it may be 

sufficient to know that the sine or cosine value falls within the range [–1, +1] or that the 

function is positive or negative.  An “exact” value (for example, precise to 10 decimal 

places) may be desirable but not essential.  In many cases being within an approximate 

range is more important than having a highly precise, but possibly incorrect, result. 

In order to be both reliable and precise, fault-tolerant computer designs must 

include subcomponents that span the confidence-complexity spectrum.  The main 

processing blocks form the lower levels in the pyramid and perform the detailed 

calculations that produce high precision results.  However, a typical processing block 

provides no protection against functional faults and is therefore relatively unreliable.  

Voting circuits resolve potential disagreement among the redundant processing elements 

and determine which result to accept.  Control circuitry manages the flow of information 

through the processing blocks.  These voter and control circuits represent the top of the 

pyramid.  They contribute little information toward the intended system function, but 

must be extremely trustworthy. 

While neither the voter nor the control circuits produce useful output data, a 

failure in either of these units can invalidate the entire fault-tolerant structure.  These 

system elements can be thought of as the “reliable kernel” or “trusted agent.”  Because 

the reliable kernel performs vital functions that are essential to system operation, this 

kernel must somehow be made more trustworthy than other parts of the system.  In 

redundant computing systems, the reliable kernel needs to include the voter circuitry and 

as many of the “single points of failure” as possible. 
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C. ERROR CODING TECHNIQUES 
An interesting option for FPGA fault tolerance is to employ error coding 

techniques.  Berger and residue codes for fault tolerance have long been considered more 

efficient alternatives to TMR, which is discussed in the next section.  However, their 

limitations and overhead requirements make them unattractive from a cost perspective for 

controlling faults in complex FPGA designs. 

Berger codes are not suitable for the type of fault tolerance addressed in this 

dissertation.  First, they only provide error detection; they cannot locate or correct errors.  

The Berger checks are designed to trigger an error flag whenever numerical errors occur, 

but a higher-level system is needed to correct the errors.  Second, Berger codes rely on 

the assumption that all errors in the data word are unidirectional, that is either all 0-to-1 

transitions or vice versa [46].  Such a fault model is insufficient for the complex 

interactions within FPGA circuits. Third, Berger codes are more costly than simple 

duplication [46], [47].  Their area overhead is often nearly the same as the duplication 

method, though Rao mentions that overhead can be lowered if the Berger coded data can 

be directly relayed to other modules without being decoded.  In various studies, Berger 

coding introduced between 50% and 250% area overhead.  Finally, Berger coding 

requires significant modification of the original circuit, whereas duplication techniques 

such as TMR are much simpler to implement. 

In [54] a biresidue code technique is proposed for conserving circuit cost, size and 

power relative to the common triplicated redundancy method that Rao describes as the 

“von Neumann approach.”  Rao estimates that the additional circuitry needed for 

biresidue checking is roughly equal to duplication of the original arithmetic circuit.  

Though better than TMR, this amount of redundancy is still quite significant.  The 

complexity and reliance on encoding, decoding and checking units is an even greater 

cause for concern.  In practical applications, the moduli are typically of the form 2k or 

2k±1 to simplify the calculations.  Nonetheless, calculating residues can be 

computationally expensive.  Furthermore, it is difficult to ensure correct operation of the 

residue checkers in an FPGA system without making them redundant as well.  Correcting 

detected errors involves recomputing missing data [54], which may require circuits nearly 

as complex as those being protected. 
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Another issue with residue check approaches is that they don’t often provide 

graceful degradation.  The biresidue approach in [54] will detect and completely correct a 

wide range of possible faults, but the errors whose residue is zero go undetected.  Since a 

residue of zero only occurs for numbers that are integer multiples of the product of the 

base moduli, these undetected errors differ greatly from the correct solution.  Thus, this 

approach does not make use of the varying importance of the different bits in an output 

data word. 

 

D. TRIPLE MODULAR REDUNDANCY (TMR) 
A common technique for improving reliability within FPGAs is known as Triple 

Modular Redundancy (TMR).  The most straight-forward TMR style is to replicate the 

desired circuit three times and include voting logic to determine the most likely correct 

output.  Because the most likely fault scenario is that a single module is in error, 

agreement between two modules is enough to determine the correct result.  Thus the 

voter outputs the most common result.  Figure 2.5 shows a simple TMR architecture.  

Note that the voter module should be considered part of the “reliable kernel” since a 

failure here can directly corrupt the output data. 

 
 

Figure 2.5 Simple TMR Architecture 

 

In general, it is possible to build N-modular redundant (NMR) systems with 

increasing reliability as N gets larger.  Figure 2.6 shows this improvement as N increases. 
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Figure 2.6 Reliability of NMR Systems 

 

However, the reliability improvement is not a linear function of N.  The relative 

gain decreases as N increases, as seen in the figure.  Equation 2.3 describes the 

performance of an NMR system in which each module has the same individual reliability, 

Rm [50].  In this equation M represents the number of modules out of the total number N 

that must simultaneously operate correctly for the system to work; typically M is greater 

than ½ of N.  A realistic reliability model must also include the possibility of voter and 

other shared logic failure.  These factors can be included as multiplicative terms that 

reduce the reliability estimate [39]. 
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By triplicating the logic and adding the voter/control circuitry, a TMR fault-

tolerant design uses more than 3 times the chip area and power of the original circuit.  

Rollins, et al., tested several circuits and found that the TMR circuits used 3x-7x as much 

power as the original circuits [9].  A TMR design is wasteful in that it performs each 
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calculation 3 times but only uses each calculation once.  This can be described as a “high 

redundancy factor.”  Conversely, a design with a “low redundancy factor” and an 

effective fault mitigation technique could provide high reliability with lower overhead 

costs.  Therefore TMR is not always the best choice for meeting overall system 

requirements. 

 

E. REDUCED PRECISION REDUNDANCY (RPR) 
This study proposes a unique architecture, termed Reduced Precision 

Redundancy” (RPR), as an alternative to the common NMR approach.  This approach 

offers reduced size and power consumption compared to NMR.  It also protects against 

common-mode failures in the algorithm or implementation because of its inherent design 

diversity.  In addition, RPR is relatively easy to implement and can be applied to a broad 

range of computational tasks. 

 

1. Background 
The term RPR has been used in the past by Shanbhag’s research team at the 

University of Illinois to describe their work in reliable low-power digital signal 

processing (DSP) [55].  Shanbhag’s team is concerned with data errors caused when the 

supply voltage is lowered as a power-saving measure and circuit delays exceed the clock 

period.  This typically leads to large numerical errors, which can be detected and/or 

corrected by a parallel computation with fewer bits of precision. 

While RPR as used in this dissertation is similar in concept to Shanbhag’s work, 

several important differences distinguish this research from any prior efforts.  First, 

whereas the Illinois team has investigated specific DSP applications such as FFT and 

filtering, this dissertation addresses fault tolerance for general numerical computing 

problems.  Second, their work does not consider SEUs nor faults in FPGA 

implementations.  Furthermore, they assume that the reduced precision module and all 

comparison/voting circuitry are fault-free.  While this is appropriate for their fault model 

and target hardware, it is insufficient for protecting spacecraft FPGA systems. 

Concepts similar to RPR have been widely used in other fields.  Littlewood [56] 

examined software designs, for use in critical safety control systems such as air traffic 



24 

control and nuclear power plants, in which “a simple secondary system is used as a back-

up to a more complex primary.”  In these kinds of designs, the more reliable simple 

system can provide sufficient control, though with less functionality, if the primary 

system fails for any reason.  This architecture is described as “redundancy in which the 

different components or versions have different levels of trust placed in them.” 

There are numerous variations on this complex/simple redundancy scheme in the 

software engineering world, known variously as: primary/backup, primary/alternate and 

mandatory/optional.  Implementations of this scheme include spatially redundant, 

temporally redundant and combined approaches.  In hard real-time systems, this approach 

can ensure that critical functions are completed according to their stringent schedule.  

These schemes involve hard tasks that must meet the defined schedule and soft tasks that 

provide enhanced performance but are not held to the same strict schedule.  In real-time 

operating systems with a single microprocessor, the designs use temporal redundancy by 

executing the primary and alternate tasks in a certain time order based on an error 

checking formula [57], [58].  This type of architecture can provide protection against 

faults in the data or algorithm as well as uncertainties in processor execution time.  With 

a multi-processor architecture, spatial redundancy can provide additional design 

flexibility and enhanced reliability. 

Liu and Han [59], [60] propose similar concepts that they call “imprecise 

computation” and “performance polymorphism” for balancing reliability and 

performance in real-time operating systems.  Liu [59] discusses imprecise computation 

for real-time systems in order to gain fault tolerance and handle processor workload 

uncertainties.  In such systems, algorithms must be designed such that intermediate 

results are available while computing the full precision result.  These intermediate results 

must be monotonically increasing in precision so that the output increases in precision as 

long as the algorithm is allowed to run.  Thus, precision can be dynamically adjusted to 

balance throughput and checkpoint-based fault-tolerance.  Han looks more specifically at 

scheduling algorithms for optimizing performance using primary (high precision) and 

alternate (low precision) tasks [60]. 

While these concepts are common in the software engineering community, there 

is very little discussion in the literature regarding their utility for FPGA fault tolerance.  
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The most relevant work, by Kakarla and Katkoori [61], uses  “partial evaluation” to build 

a TMR-like SEU-tolerant design.  Their design provides SEU immunity through a unique 

approach of constructing “reduced circuits” in a spatially redundant configuration.  These 

reduced logic circuits are simplified from the original circuit by determining the most 

probable value for each signal.  A signal with a high probability of being either 0 or 1 is 

rounded to a constant value and the circuit is reduced.  In addition, temporal redundancy 

is implemented on the full circuit to cover instances when the input data differs from the 

predicted values.   Based upon the actual input data, the system dynamically chooses 

whether to use the results from the spatially redundant or temporally redundant circuits.  

One limitation with this approach is the increased latency through the temporally 

redundant path.  Another problem for an FPGA implementation is the vulnerability to 

configuration faults within the original circuit when low-probability input vectors are 

received. 

 

2. Architecture Description 
RPR is an efficient fault-tolerant architecture that improves the reliability of 

complex calculations by utilizing approximate solutions from relatively small redundant 

elements.  RPR provides many of the same benefits as TMR, such as error detection, 

error masking, fault location and ease of implementation.  In contrast to TMR, this 

architecture consumes fewer resources and may be considerably more efficient for many 

applications.  The main drawback to RPR is that its error masking capability can only 

guarantee an approximate solution. 

The concept for “reduced precision redundancy” (RPR) is shown in the figure 

below.  Notice the similarity to the pyramid in Figure 2.4.  The bottom level consists of a 

computation unit that operates at the maximum precision needed for the intended 

application; thus this unit is called the exact module.  In the middle are 2 or more units 

that perform the same basic function as the exact module, though with less precision; thus 

they are called approximate modules.  At the top-level is a voting unit that decides which 

of these several results are most likely correct and should be provided as the output data. 
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Figure 2.7 Simple RPR Architecture 

 

This architecture is considerably more efficient than TMR if it provides 

acceptable performance.  A major contribution of this research is the demonstration that 

in many situations RPR performs very well.  This dissertation quantifies RPR 

performance according to computational throughput, latency, accuracy and reliability.  In 

benign conditions, RPR provides performance equal to TMR designs.  RPR may be less 

accurate or less reliable than TMR in high radiation environments, but its overall 

efficiency is better because it consumes fewer resources.  As a general rule, the efficiency 

of a design can be assessed by its physical size – in an FPGA this can be measured by the 

fraction of resources used as given by vendor-specific parameters such as slice count and 

I/O pin count.  Power consumption is often proportional to area, though detailed analysis 

is needed to prove which of various competing designs use less power.  If the RPR 

version of a design is much smaller than a TMR version, it should offer significant power 

savings. 

The resource savings of an RPR design depend heavily on the level of precision 

needed in the redundant modules.  With the wide range of possibilities for implementing 

the approximate modules, there is a nearly continuous range of possible resource 

utilization for a design.  At one end of the spectrum are designs with very coarse 

approximations, which utilize extremely small approximate modules.  At the other end of  
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the spectrum are designs that require extremely high precision even in the redundant 

modules.  The limiting case at this end would be a full TMR solution.  Chapter IV 

addresses these issues in more detail. 

 

3. Applying RPR to Computational Problems 
In this dissertation, computational problems and algorithms suitable for RPR 

implementation are termed “Class A” problems.  Conversely, problems and algorithms 

that are not suitable for RPR implementation are termed “Class B” problems.  Most 

numerical computations are Class A since digital systems must represent real numbers 

with finite precision, introducing some degree of approximation even in the full precision 

situation.  It is a matter of implementation and desired performance that determines the 

level of precision used for representing the numbers.  Other types of problems may also 

be Class A, such as complex state machines that compute control signals of varying 

complexity and criticality.  Furthermore, all design specifications should be carefully 

scrutinized, since it is common for system designers to over-specify portions of a design.  

If a component spec calls for unnecessarily high precision, perhaps the spec can be 

relaxed or the component’s reliability can be improved with lower-precision redundant 

units. 

 

a. Class A Problems 
For most Class A problems, a gradient of importance exists amongst the 

computed bits.  The figure below shows a hypothetical distribution curve where various 

bits are more or less significant.  This figure suggests that more effort should be spent on 

improving the reliability of the most important data elements and less effort given to the 

least important elements.  This concept is directly applicable to numerical functions since 

they produce results with easily identified more-important and less-important data 

elements.  In a fixed-point number system the most important data is typically the Most 

Significant Bit (MSB), which carries the most weight, and the least important data is the 

Least Significant Bit (LSB) which carries the least weight.  Similarly, in a floating-point 

number system the exponent field is typically the most important and the mantissa (or 

significand) field is the least important. 
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Figure 2.8 Bit Significance Distribution Curve 

 

Addition and multiplication are simple examples of the kinds of 

computational problems appropriate for RPR.  In a fixed-point number representation, an 

approximate addition can be produced by only including enough bits, starting at the 

MSB, to meet the minimum acceptable precision.  (Keep in mind that for RPR to be 

useful, the minimum acceptable precision must be appreciably less than the precision 

needed for optimal performance.)  For example, a lazy bookkeeper might balance his 

checkbook by only adding/subtracting whole dollar amounts – the results will probably 

be close enough to avoid major financial disaster. 

Next, consider the task of multiplying floating-point numbers.  More harm 

can come from errors in the sign and exponent calculations than in the mantissa 

calculation.  Thus, an approximate solution might involve checking the signs and adding 

the exponents – therefore eliminating multiplication of mantissas and any necessary 

pre/post-shifting.  This type of “order of magnitude” calculation is common in science 

and engineering when performing initial estimates and “sanity checks.” 

The tables below illustrate these basic techniques with some simple error-

bounding (upper and lower bounds) and bias-removing schemes.  Removing bias for 

addition might involve adding a value of ½ for each element being added, since this is the 

best estimate of the discarded fractional portion of each entry.  For the floating-point 

multiplication example, note that even the “exact” solution is not really exact since the 

correct result should be 7,448 instead of 7,424.  This, of course, is because of the limited 

word-length allowed in this case – as is true in most real-world designs.  Even with 

infinitely precise internal calculations, the output cannot represent the number 7,448 with 

only 4 fractional mantissa bits.  Thus “approximate” solutions are inherent in this 
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calculation.  In order to remove bias in multiplication, we could estimate each entry’s 

mantissa as 1.510 and precalculate a best guess for the resultant mantissa based on how 

many entries are multiplied. 

 
 Unsigned binary Decimal 

A 01001.001 9.125 
B 00110.101 6.625 
C 00100.110 4.75 
D 00011.010 3.25 
Exact sum = A+B+C+D 10111.110 23.75 
Integer sum (low) 10110.xxx 22 
Integer sum + 4*½ (mid) 11000.xxx 24 
Integer sum + 4*1 (high) 11010.xxx 26 

 
Table 2.1 Approximation Methods for 4-Input Sum Calculation 

 

 Floating-point binary 
sign | exp | mantissa 

Decimal Equivalent 

A + | +0110 | 1.0011 1.1875*26 = 76 
B + | +0011 | 1.1100 1.75*23 = 14 
C - | +0010 | 1.1100 1.75*22 = 7 
“Exact” product =A*B*C - | +1100 | 1.1101 1.8125*212 = 7,424 
Exp sum * 13 (low) - | +1011 | 1.xxxx 211 = 2,048 
Exp sum * 1.53 (mid) - | +1100 | 1.1011 1.6875*212 = 6,912 
Exp sum * 23 (high) - | +1110 | 1.xxxx 214 = 16,384 

 
Table 2.2 Approximation Methods for 3-Input Product Calculation 

 

b. Class B Problems 
There are several ways for a problem to fall under the Class B category.  First, the 

full precision calculation of a function may be the simplest solution.  Solutions to some 

problems are either correct or incorrect, with no possibility of being approximately 

correct.  These kinds of problems frequently exhibit no gradient of importance among the 

output bits, as discussed in the previous section.  Also, some problems are only solvable 

using a single algorithm or method.  Most logic functions (such as the vector operations 

AND, OR, NOT, etc.) fall under the Class B category as there is no meaningful way of 

describing an approximate solution.  Peterson and Rabin [62] proved that for all non-

trivial logic functions, except XOR and its complement, the only means of error checking 

is complete duplication.  XOR is a special case because parity bits can be used to detect 
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and/or correct errors in the XOR computation.  For the other logic functions, the simplest 

circuit for detection of errors requires a coding scheme and checking operation identical 

to the operation being checked. 

Second, even if an approximate solution can be found, it may be insufficient to 

adequately protect the system against faults.  Third, a particular problem or algorithm 

may be Class B for practical reasons such as size, speed and power.  For example, if the 

only possible reduced precision solution requires more complicated voting circuits than 

TMR, then RPR is not a wise choice.  

Another way of looking at Class A/B problems is to consider the 

possibility of catastrophic failure.  Generally speaking, systems with well-designed 

feedback mechanisms can tolerate some degree of imprecision/error/noise.  However, 

systems with positive feedback or open-loop systems may not be able to recover from 

even a single error.  If even small errors can lead to catastrophic failure or an 

unrecoverable state in which complete system shutdown is needed, the task is Class B.  

Many state machines have certain undefined states that, although unexpected in normal 

operations, are possible in an SEU environment.  In a poorly designed state machine 

these possibilites may not have been considered and the system may never recover on its 

own from such a situation.  For example, consider a microprocessor that is performing an 

interrupt service routine.  If instead of reading an instruction from the interrupt handler 

code, the processor unintentionally writes into the memory space holding the code, the 

processor may get stuck processing invalid instructions until a complete reboot is 

performed. 

 

c. Approximate Solutions 

While it is difficult to give precise definitions of Class A and Class B 

problems, it is possible to describe whether or not approximate solutions can be found for 

a particular problem.  The following discussion considers only whether RPR is possible, 

not whether it is advantageous.  Since the goal of fault-tolerant computing is to ensure 

correct data output, it is important to understand how functions act as mappings from 

inputs to outputs.  Some mathematical definitions related to functions help this  
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discussion.  The domain is the set of all input values to the function.  The codomain is the 

set of all possible output values from the function, whereas the range is the set of all 

actual output values. 

The distinction between “codomain” and “range” is especially significant 

with regard to fault-tolerant FPGA designs.  Since SEUs can cause a function to 

malfunction in perverse ways (adders can become subtractors, etc.), it is important to 

recognize that an erroneous output value could exist anywhere in the codomain, not only 

in the expected range.  For example, an algorithm that adds a series of positive integers is 

expected to produce outputs in the range of positive integers.  Yet a misbehaving circuit 

might output negative numbers.  A fault-tolerant design should consider the potential 

effects from such miscalculations and provide adequate detection/mitigation for them. 

Functions are often thought of as “mapping” inputs to outputs and can be 

visualized as directed arcs linking domain members with codomain members.  Such 

visualizations can help determine relationships between various domain and codomain 

members.  For example, consider the logical function AND for input vectors of up to 3 

elements, depicted in the figure below.  Since the output from this function can only take 

on two values, TRUE or FALSE, numerous input values produce the same outcome.  Can 

the function be simplified to take advantage of the fact that the correct outputs can be 

reached using less input information?  Intuitively we know that the answer is no.  As 

shown highlighted in the figure, if only the leftmost bit is considered by the function, the 

wrong conclusion will be made 3/8 of the time.  If only the leftmost 2 bits are considered, 

the wrong result is produced 1/8 of the time.  All 3 bits of input are necessary and no 

simplification is possible.  Therefore the logical function AND is a Class B problem. 
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Figure 2.9 AND Function Map for 3-Bit, 2-Bit and 1-Bit Input Vectors 

 

This graph-based technique can be expanded to include more general input 

and output relationships.  The figure below shows input vectors of various lengths (as 

indicated by the number of contiguous empty boxes) and several output points.  By 

grouping inputs and/or outputs in some way, it may be possible to find relationships 

permiting simplification of the function.  Input groupings may be related to positional 

features of the vectors, as discussed in the AND example, or numerical ordering.  Output 

groups may be defined precisely (such as all values within a narrow range) or broadly 

(such as all positive values).  Furthermore, a particular output value may belong to 

multiple groups.  An additional feature shown in the figure is that the graph can include 

multiple distinct functions that perform the same basic operation.  In this hypothetical 

example, a different mapping function is assumed for each input vector size (as shown by 

distinct linetypes). 

 

001 
False 

True 

010 

011 

100 

101 

110 

111 

00 

01 

10 

11 

0

1

000 



33 

 
Figure 2.10 Hypothetical Multi-Function Map 

 

This abstract description can also be described as “clustering.”  Clusters 

correspond to the groups defined above, with the additional feature that members of a 

cluster are more closely related to one another than to any other cluster.  If each cluster of 

input vectors maps to a unique cluster of output vectors, there is potential for 

simplification through approximation.  If, however, there is cross-over between input and 

output clusters, such a simplification is not possible.  If the function map shows 

clustering, approximation may be possible, but is not guaranteed.  Clustering is a 

necessary, but not sufficient, condition for Class A.  Functions that exhibit no clustering 

or clustering that cannot be translated into a simplified function are Class B problems. 

Another simple example demonstrates how clustering can reveal potential 

simplifications.  In this example, the function is a simple conversion from a binary 

number system to decimal.  The range for the decimal values is 0 to 7, thus 3 binary 

digits are needed to precisely map to decimal integers.  If the computing system is limited 

to only 2 binary digits, then it must decide how to interpret the binary values.  Assuming 

the system is required to produce integer values, the value “00x” in the figure could map 

to either 010 or 110.  Input clusters can be defined by the 2 MSBs {00x, 01x, 10x, 11x} 
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and output clusters can be defined as the intervals {0-1, 2-3, 4-5, 6-7}.  Each input cluster 

maps to a unique output cluster, so the function can be simplified. 

 

 
Figure 2.11 Clustering for 2-Bit and 3-Bit Representations of Integers 

 

Approximate solutions can be more easily identified when the problem is 

defined at the proper level.  Although the AND function itself is Class B, it may be part 

of a larger and more complex algorithm, which at a higher level of abstraction could be 

deemed Class A.  Peterson and Rabin [62] also observed this important distinction and 

noted that “an adder can be constructed of ‘and,’ ‘or,’ and ‘not’ devices which cannot be 

simply checked, and yet the addition operation as a whole can be checked quite well 

without complete duplication." 

 

d. RPR Suitability 
The process for determining if a task is amenable to RPR is summarized in 

the following flowchart.  The figure below outlines the steps for determining whether a 

problem is Class A or B.  When using this flowchart, both the algorithm and its intended 

application must be considered together.  A given algorithm may be Class A in some  
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applications but Class B in others.  Similarly, a problem might have several possible 

solutions with varying precision, but the higher-level system may require full precision 

constantly. 

 

 
Figure 2.12 RPR Suitability Flowchart 

 

This process begins with a thorough understanding of the desired 

computational task or problem.  Assuming that the system requires some degree of fault 

tolerance, the first step in the flowchart determines whether error detection or correction 

is necessary.  If the system requires accurate data on a continuous basis, then error 

correction or masking may be needed.  For example, losing a few data frames on an 

encrypted link may cause unrecoverable corruption of the datastream.   In less stringent 

designs, error detection may be sufficient.  For example, a video transmission with 
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periodic resynching might only require error detection since losing a few video frames to 

bad data is usually not catastrophic. 

If error detection is sufficient, step 2a determines whether full precision 

error checking is needed or if error bounds checking is adequate.  With an RPR design 

using upper and lower bounds checking, faults in the exact module could cause it to 

produce slightly imprecise results that the voter would deem acceptable.  Such errors 

would be undetected if they are less than the threshold of the upper/lower bounds checks.  

If the system can tolerate these undetected inaccuracies, RPR may be appropriate.  

Otherwise, exact error checking is required – full duplication or TMR is needed – and the 

task is Class B. 

If step 1 calls for error correction, step 2b addresses the safety of the 

system if the precise calculation is corrupted.  RPR can provide fault masking by using 

output from one of the low precision modules when faults corrupt the high precision 

results.  If the cause is a persistent configuration fault in the FPGA device, this situation 

will exist until the fault is scrubbed from the circuit.  If the cause is a transient data fault, 

the error may exist for as short as a single clock cycle.  In either case, the system’s 

response to imprecise data must be assessed.  If imprecise “noisy” results can lead to 

catastrophic failure, the task is Class B. 

The next two steps relate to the specific algorithm(s) selected to perform 

the required task.  Step 3 considers whether it is possible to build a reduced precision 

circuit.  If such a circuit is impossible or impracticable, the algorithm is Class B.  This 

was discussed at length in the last couple of sections.  The baseline design for the full 

precision algorithm is shown as an input to step 4, which looks at whether the reduced 

precision design provides any substantial benefit.  If the answers to steps 3 and 4 are 

affirmative, RPR is a good candidate for achieving fault tolerance in a design and the task 

is Class A.  The next section provides examples to help illustrate this selection process. 

 

e. Examples 
Consider a satellite’s solar panel servo-control system.  Satellites in low-

earth orbit (LEO) spend roughly half the time in sunlight and the other half in darkness.  

While in sunlight, the articulating solar panels are oriented towards the sun to maximize 
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power output.  In this hypothetical example, the designers want to conserve energy while 

in Earth shadow, so the solar panel control system will not track the sun vector through 

darkness.  Instead, once the satellite enters darkness, it calculates a minimum-energy 

solution to position the solar panels in the optimum direction for when the spacecraft 

reenters sunlight.  Fault tolerance in this application should ensure the solar panels face in 

the general direction of the sun upon exiting Earth’s shadow. A miscalculation that 

directs them away from the sun could be very damaging (loss of power could lead to loss 

of spacecraft operation). 

The algorithm for this calculation is likely to be quite complex.  However, 

there are simple approximate solutions, such as using the position calculation from the 

previous orbit as an approximation and error-checking value.  Error detection may be 

adequate for a LEO satellite, which spends roughly 40 minutes in darkness per orbit, 

allowing plenty of time to recalculate if an error in the detailed calculation is detected.  

Since the approximate calculation can be performed with very little circuitry, RPR may 

be appropriate for this problem. 

As another example, consider a satellite attitude control algorithm 

designed to keep the satellite pointed in a desired direction.  Inputs include various 

parameters such as position, velocity, current orientation, desired orientation, etc.  

Outputs consist of commands to thrusters and reaction wheels.  The basic design 

specification includes the computational precision needed to meet the satellite pointing 

accuracy requirement.  At steps 1 and 2 in the flowchart of Figure 2.12, we find that the 

system cannot safely stall long enough for a fault to be repaired.  Complete 

reconfiguration of an FPGA may take tens of milliseconds, allowing the satellite to drift 

dangerously far from the required position.  Therefore, error correction/masking is 

needed.  However, small deviations from the desired position/orientation can be 

accommodated by the natural feedback in the control system, so occasional small 

perturbations are acceptable.  Quantifying the frequency and amount of acceptable 

perturbation requires careful scrutiny of the design.  At step 3 in the flowchart, there are 

many approximate solutions, ranging from lower precision numerical calculations to 

simply ignoring some input parameters.  Finally, at step 4 we anticipate that the simpler 
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control algorithms will be smaller and consume fewer resources than the more exact 

algorithm.  Therefore, we conclude that RPR is a viable option for this design. 

Data compression algorithms provide interesting examples for considering 

the applicability of RPR.  Some data compression tasks are Class A, while others are 

Class B.  Lossy compression techniques, such as JPEG, can usually tolerate some 

imprecision.  One of the standard JPEG compression techniques performs numerous 

multiplications and additions as part of calculating the discrete cosine transform (DCT) 

for each subarray in an image [63].  A transient error during one of these calculations 

leads to poor image reconstruction in only a small portion of the total image, leaving the 

rest of the image intact.  Furthermore, even faults causing reduced precision across an 

entire image are generally tolerable, as they degrade image quality but are not 

catastrophic to the image processing system.  Thus the DCT calculation for JPEG image 

compression is Class A.  (Chapter VIII looks at this example in more detail.) 

There are numerous lossless compression techniques, with widely varying 

methods of compressing data.  One of the most common lossless compression codes is 

the Lempel-Ziv code (a standard part of ZIP programs).  This code is based on 

dynamically building a dictionary of common “phrases.”  Compression is possible when 

addressing uses fewer bits than the phrases themselves.  The program compresses data by 

addressing the dictionary entry that contains the phrase, rather than the phrase itself.  

Lempel-Ziv is a Class B algorithm since a corruption of the dictionary can lead to 

complete failure of all subsequent phrase/address calculations [35].  Other lossless 

compression techniques may be amenable to RPR application.  For example, Huffman 

coding, which is used in some facsimile transmission and JPEG standards, is based on 

predicted symbol statistics [64].  Imprecise calculation of these symbol statistics may 

cause graceful degradation as in DCT, rather than abrupt failure as in Lempel-Ziv. 

 

f. Applying RPR to non-FPGA Systems 
While this dissertation focuses on FPGA designs, the RPR design 

philosophy can be extended to other technologies.  As discussed in Section 1 above, RPR 

is similar to techniques used in other fields.  Many of the design parameters considered in 

this dissertation (area, speed, reliability, etc.) are directly applicable to any digital 
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computing technology.  However, RPR is especially suitable for FPGAs because its 

redundancy structure addresses the large range of possible faults, including configuration 

faults, that affect circuit behavior.  For traditional digital systems implemented on non-

volatile circuits, transient faults affect only data values and leave circuit function intact.  

For these systems, many other fault tolerance approaches, such as data coding, may be 

appropriate.  Nonetheless, because of RPR’s scalability and ease of implementation, it 

offers a unique and competitive option for fault-tolerant designs. 

 

5. Flexible Precision Computation 
The preceding sections focused mainly on determining whether it is possible to 

apply RPR to various computational problems.  A higher-level system perspective is 

necessary to determine whether RPR is practical in a certain application – steps 2a and 2b 

in the flowchart of Figure 2.12 address this issue.  A key performance parameter of any 

numerical computation is the precision of its output.  Precision is typically measured by 

the number of bits used to represent the whole and fractional parts of the true numerical 

value.  For example, a 10-bit fractional binary number can represent real numbers to 

within +/- 2-11=0.000488 of their true value. 

Digital design specifications generally include the precision required for a given 

application.  Designers often use a worst-case scenario that requires maximum precision 

to determine these requirements.  A system built to these conservative specifications will 

provide the necessary performance under all conditions.  However, many computing 

applications can operate at lower precision for short periods of time with minimal or no 

adverse effect.  The term “flexible precision” refers to designs that take advantage of this 

possibility by adapting to meet variable precision needs. 

Flexible precision computation is a viable technique for many applications.  For 

computer graphics processing, such as in video gaming, the fidelity of image rendering 

can adapt according to scene dynamics, display device properties and viewer preferences.  

Furthermore, the limits of human visual perception can be exploited to simplify 

computations that produce results of higher precision than the human eye can perceive 

[65]. 
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Control systems is another field where flexible precision seems promising.  For 

example, a satellite’s attitude control system senses the satellite’s position/orientation and 

commands thrusters and reaction wheels to achieve a desired end-state.  Such systems 

must have a very short response time and be very reliable.  In this situation, it is 

preferable for the control system to constantly provide accurate but less precise 

commands than to occasionally fail abruptly and issue inaccurate and possibly 

detrimental commands. 

As a more specific example, imagine a reconnaissance satellite that images 

specific locations on the earth’s surface.  The satellite must be oriented such that the 

imaging sensors can view the approximate ground locations.  This general orientation 

control is sometimes called “coarse alignment.”  Typically the imaging sensors 

themselves have at least one feedback control loop to permit finer control for keeping the 

target image centered in the camera field-of-view.  This more precise pointing control is 

called “fine alignment” and is commonly used on ground-based telescopes with fast 

steering mirrors [66].  Fine alignment is also used on consumer products, such as video 

cameras.  Many hand-held video cameras offer “image stabilization” features that use 

optical and/or electronic techniques to compensate for jitter.  Ideally, coarse alignments 

control the reconnaissance satellite so precisely that the fast steering mirror need only 

compensate for small-amplitude, high-frequency jitter.  The inherent redundancy of this 

arrangement, however, allows for some degree of imprecision in the coarse alignment. 

If a system can accommodate flexible precision then it is likely Class A.  

Algorithms that take advantage of flexible precision, such as the dynamic graphic 

rendering technique mentioned above, are prime candidates for RPR.  In addition, 

systems that function best with full precision but can safely operate with temporarily 

reduced precision, can also benefit from RPR’s efficiency.  Steps 2a and 2b in the 

flowchart address whether flexible precision can be safely utilized in an RPR structure. 

 

F. VOTER ISSUES 
Voting techniques are important to the overall effectiveness of a fault-tolerant 

design.  Descriptions and classifications of a wide variety of voting techniques are 

provided in [67].  A common NMR voting method is to take the bit-wise majority as the 
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correct output vector [68].  However, when faults exist in more than one module, this 

voting style may produce an output that doesn’t exactly match any of the pre-voted 

results.  The table below demonstrates this dilemma for 3-modular and 5-modular 

redundant systems.  The bit-wise majority output vector may not even represent a 

permissible output.  Furthermore, in the hypothetical 5-modular example shown, a fault 

analysis based on the bit-wise majority would conclude there must be faults in all 5 

modules.  The vector-wise majority implies that only 3 modules are faulty.  In this 

example the vector-wise majority seems superior, since fewer faults is the more likely 

scenario.  Gersting [69] studied alternative voting schemes that partially address these 

issues. 

 
 3-Modular 

Redundancy 
5-Modular 

Redundancy 
Module A result 101100 101100 
Module B result 011111 011111 
Module C result 100011 100011 
Module D result  101100 
Module E result  010101 
Bit-wise majority 101111 101101 
Vector-wise majority ?????? 101100 

 
Table 2.3 Hypothetical Outputs from 3-Modular and 5-Modular Redundancy 

 

In some situations an inexact voting method is necessary.  For example, when 

comparing the outputs from redundant analog-to-digital converters, it is quite likely that 

the various outputs will not match exactly due to inherent noise in the system.  Error 

detection in this scenario must include some error thresholds in order to distinguish 

between truly faulty modules and simply normal data variability.  Some of the issues with 

inexact voting are the determination of appropriate thresholds and the increased 

complexity of inexact voting circuits [67].  Lorczak [70] proposes a generalized median 

voter for addressing some of the difficulties with inexact voting.  In addition, Lorczak 

provides several examples demonstrating situations when various alternative voting 

methods are optimal. 
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These issues of inexact voting are important in an RPR implementation.  In 

considering the simple RPR architecture shown in Figure 2.7, it is clear that the voter 

must decide whether the exact solution is acceptable based only upon information from 

inexact redundant modules.  With a binary pass/fail criteria, the voting methodology must 

properly merge the data with the understanding that the various modules will not match 

one another exactly.  The example in the table below demonstrates this dilemma. 

 
 Binary Two’s 

complement 
Decimal 

8-bit “exact” 00111001 57 
4-bit w/ truncate 0011xxxx 48 
4-bit w/ rounding 0100xxxx 64 

 
Table 2.4 Example Relationship Between Alternative Numerical Approximations 

 

The upper four bits of the exact solution match the approximate solution 

calculated by truncation, but not the calculation based on rounding.  A sophisticated voter 

could use either approximation technique and apply an error bound before declaring the 

exact solution correct or incorrect, but this would require a larger and more complex 

voter circuit.  Using spatial redundancy in the middle layer can keep the voter as simple 

as possible.  Two approximate modules, for example, could calculate upper- and lower- 

bounds that differ by one in their LSB position.  Then the voter need only compare the 

most significant bits to determine if the exact solution matches one of the approximate 

values and is therefore within the error bounds.  (Chapter VIII discusses these issues in 

more detail.)  However, this approach requires the approximate modules to be highly 

reliable, since the voting is essentially a 2-out-of-2 pass criterion.  To increase the 

reliability of the approximations and voting, further redundancy within the middle and 

top layers of Figure 2.7 may be appropriate, since duplication of these smaller modules 

can be simpler and smaller than duplication of the exact module. 

 

G. SUMMARY 
This chapter has developed RPR as a new approach for achieving SEU tolerance 

in FPGAs.  Like other fault tolerant methods, RPR requires error checker and voter 
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components that have higher reliability than the circuits they are protecting.  In FPGA 

designs this can be achieved if the checker/voter modules are significantly smaller than 

the primary computation module, as smaller circuits should be less likely to suffer SEUs 

than large circuits.  Chapters VI and VII present data confirming this hypothesis.  The 

other main advantage of RPR is that the relatively small redundant calculation circuits 

require less area and power than the redundant circuits in TMR.  Chapter III discusses 

FPGA power reduction in more detail and Chapter VI provides data confirming RPR’s 

power advantage.  Finally, Chapter VIII revisits several RPR implementation ideas 

introduced here, including proper upper/lower bounding, the use of lookup tables, and the 

effect of imprecise calculations. 
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III. POWER SAVINGS TECHNIQUES 

A. POWER EFFICIENCY FOR FPGA DESIGNS 
The tremendous demand for energy efficient designs in the commercial market 

has spurred development of power-aware circuits and system architectures, especially in 

the last decade.  There are many approaches for reducing power consumption in digital 

circuits.  However, some of these approaches are not viable for systems using FPGA 

devices.  Furthermore, some approaches degrade the radiation and/or fault tolerance of a 

system.  This chapter describes the most promising methods for reducing power 

consumption in FPGA systems, while considering their impact upon the system’s fault 

tolerance. 

In addition, this chapter discusses the potential power savings of an RPR 

architecture over standard TMR and other fault tolerance methods.  Once a design for the 

full-precision circuit is established, the engineer must choose what redundancy method(s) 

to use for protecting the circuit.  Although there are many intriguing options for 

minimizing power consumption, a principal means of achieving power efficiency is 

through reducing the physical size of a circuit.  A key feature of RPR is that it requires 

much less chip area than TMR.  Therefore, RPR’s reduction in circuit size offers 

significantly reduced power compared to TMR.  Though the total area and power savings 

depend on the particular circuit and precision requirements, the RPR circuits built for this 

research use between 1/3 and 1/2 the circuit area as the equivalent TMR designs.  As is 

shown in Chapter VI, effective RPR designs can use less than half the power of TMR and 

only slightly more power than the original unprotected circuit. 

 

B. BACKGROUND 
Power consumption within CMOS-based (Complementary Metal-Oxide-

Semiconductor) FPGA circuits can be divided into two categories: static and dynamic 

[30].  The total power consumed in a device is simply the sum of these two components: 

 dynamicstatictotal PPP +=  (3.1) 
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Static power , given by Pstatic = Vsupply × Istatic, is determined by all electrical 

current that flows when a circuit is “powered up” and ready to perform useful functions.  

Static power does not depend on whether the circuit is actually processing data, which is 

usually determined by a clocking signal.  Ideally, electronic devices would consume zero 

static power.  However, appreciable static power can arise from device imperfections, 

biasing configurations, and basic physical design characteristics.  In older technologies 

such as Resistor-Transistor Logic, the resistors used as bias elements consumed 

considerable static power.  Transistor leakage current is the most significant component 

of static power in modern CMOS technology.  In current technology, static power is 

typically much smaller than dynamic power and is often ignored in general CMOS 

circuits [38]. 

Dynamic power is consumed when signal transitions occur in a circuit.  When a 

signal changes from high-to-low or vice versa, current flows in order to charge or 

discharge the effective capacitance of that signal node.  This effective capacitance 

includes the actual capacitance at the node, short-circuit effects during transitions, and 

ohmic losses from non-ideal device properties. 

The basic formulas for dynamic power in CMOS circuits, such as FPGAs, are 

given in Equation 3.2 below.  The first formula gives the average power consumption for 

a single node within a circuit, while the second formula simply sums the power over the 

entire circuit.  In this context, a node might be defined at the transistor level or at the 

logic gate level.  Either definition can be used so long as the node transition activity 

factor α and effective load capacitance C are properly determined. 
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where α  node transition activity 
f  clock frequency 
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V  power supply voltage 
N  total number of circuit nodes 
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1. Relative Contributions of Static and Dynamic Power 
The percentage of power attributed to static and dynamic terms depends strongly 

on the device technology and the specific circuit under investigation.  Dynamic power 

dominates for typical CMOS devices such as microprocessors and FPGAs [10], [71], 

[72].  However, modern FPGAs have routing and control structures that draw substantial 

static power, mostly through transistor leakage current [9].  Guo [73] notes that, 

depending on factors such as design configuration and operating frequency, “static power 

is between 5%-20% of the total power dissipation in Virtex-II.”  As FPGA circuit 

densities continue to increase, static power will increase proportionally with the total 

transistor count.  Furthermore, CMOS technology is evolving towards thinner gate oxides 

and lower threshold voltages, both of which increase leakage current [74].  In the future, 

static power may become dominant in FPGAs.  Thus, static power should not be ignored 

in FPGA designs. 

Whether static or dynamic power dominates is important for power optimization 

in circuit designs.  Where static power is dominant, emphasis should be placed on circuit 

designs that use fewer transistors or that can disable inactive circuit elements.  When 

dynamic power dominates, designs with fewer signal transitions are most beneficial.  The 

following two sections discuss ways to reduce static and dynamic power. 

 

2. Reducing Static Power 
Static power is essentially a fixed quantity based on the semiconductor process 

used to build the device.  Therefore, there are limited ways in which a circuit designer 

can reduce this term in the power equation.  Designs using COTS products, such as most 

FPGA devices, have little or no opportunity for influencing static power consumption.  

However, ASIC or custom FPGA designs can utilize the techniques described below for 

minimizing this component of power. 

One way of minimizing static power consumption is to attack the fundamental 

physical imperfections that give rise to this power term.  Various semiconductor 

enhancements have been pursued to achieve this goal.  The use of CMOS devices is a 

major improvement over older circuit technologies.  The counter-balancing NMOS and 

PMOS transistors in a CMOS circuit provide fast signal transitioning and very low static 
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current draw.  Nearly zero static current flows because in both the 0 and 1 states, one of 

the two transistors (PMOS or NMOS) connecting Vsupply and ground is in cutoff mode.  

MOS transistors act as nearly perfect switches in cutoff mode by eliminating the 

conductive “channel” between the transistor’s source and drain.  Virtually all modern 

semiconductor devices, including FPGAs, use CMOS technology. 

Given that most FPGA circuitry is based on CMOS devices, it is important to 

focus on approaches that address the unique issues of this technology.  Although CMOS 

devices act as excellent switches, they are not perfect.  Even when MOSFETs are in 

cutoff, inevitably some leakage current flows.  This leakage current has two components, 

gate and sub-threshold leakage.  Gate leakage can only be improved by modifying the 

gate oxide material and dimensions; such changes typically degrade transistor 

performance [74].  Minimizing sub-threshold leakage requires the use of transistors with 

higher threshold voltages [74].  This has two counter-acting effects upon radiation 

tolerance.  It degrades radiation tolerance by reducing noise margins (the gate-to-source 

voltage must be kept high to ensure the transistor remains on), but somewhat improves 

tolerance by increasing the threshold that transients must overcome in order to upset the 

node (a transistor that is off must suffer a relatively large gate-to-source voltage spike in 

order to be switched on) [29]. 

A more direct way of minimizing static power is simply reducing the transistor 

count in the circuit.  Fewer transistors mean less leakage power.  However, in FPGAs the 

total number of transistors is fixed.  Every transistor contributes to the total static power 

consumption, whether or not it is a part of the functional circuit being implemented on 

the device.  One approach to overcoming this limitation is to include circuitry within the 

FPGA to force unused portions of the device into low-power standby modes [74].  This 

technique, widely used in ASICs, determines when specific subcircuits are temporarily 

inactive and places them into a standby or “sleep state” in which transistor leakage power 

is reduced.  Unfortunately, such features aren’t available with the current generation of 

FPGA devices. 
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3. Reducing Dynamic Power 
Whereas static power in FPGAs is basically a constant value, a circuit designer 

has control over many parameters affecting dynamic power.  Power can be reduced by 

minimizing any of the terms in Equation 3.2, without increasing the other dynamic or 

static power terms.  This is particularly challenging when certain parameters affect these 

terms in opposing ways.  For example, semiconductor processing changes that permit 

operation at lower voltage V can lead to higher static power draw since lower threshold 

transistors are more prone to leakage current [12].  Dynamic power reduction is 

especially difficult with FPGAs because the devices’ electrical characteristics preclude 

some power saving techniques that are used in VLSI designs.  In custom VLSI circuits 

the designer has control over many parameters, such as transistor dimensions and 

conductor lengths.  These parameters, which affect node capacitance C and signal 

propagation delay, are fixed in FPGAs.  Power consumption in FPGAs is also very 

sensitive to design placement and routing [9], as this affects the capacitance and 

transition activity of signal nodes.  However, optimizing the complex placement and 

routing process is challenging. 

Large improvements can be made by reducing the power supply voltage, since it 

is squared in the power equation.  This has been exploited extensively over the years.  

Older CMOS technologies were designed to work with standard TTL 5 V signals, 

whereas many CMOS devices now use power supply voltages of 1 V and below [30].  

Many modern FPGAs use multiple supply voltages within the chip, using the lowest 

voltages for the “core” logic and higher voltages for I/O components.  However, lower 

voltages can decrease the speed of a circuit [75].  A popular approach called dynamic 

voltage scaling involves adjusting the voltage supplied to portions of a circuit as the 

speed and performance requirements fluctuate. 

Another fairly simple way of minimizing Equation 3.2 is by lowering the clock 

frequency.  This has a linear affect on the total dynamic power but also negatively 

impacts system throughput.  In order for a slower circuit to complete the same number of 

calculations as a faster circuit, it must run for a longer time.  Though the slower circuit 

requires less average power, it typically uses more total energy to provide the same 
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computational service.  However, in situations where the throughput requirements change 

dynamically, a variable frequency clock design may be beneficial. 

The next term to address is the capacitance.  Semiconductor advances have 

permitted smaller device dimensions and shorter interconnections, thereby helping to 

reduce dynamic power with each new generation.  In ASIC designs, the layout and length 

of wires can be optimized to minimize the capacitance of nodes with high toggle rates.  

However, in FPGAs the distance between components is fixed and therefore the 

capacitance values are predetermined.  Nonetheless, some optimizations are possible with 

FPGAs.  For example, designs can be compiled such that nodes with high toggle rates are 

placed onto shorter wires [76].  Genetic algorithms have even been applied to this 

problem, such as in [77] where the mapping process attempts to place frequently 

changing signals on short, low-capacitance paths within the configurable logic blocks 

(CLBs) while avoiding paths that transit the relatively high-capacitance interconnect 

switches outside the CLBs. 

The most intriguing solutions for reducing dynamic power involve minimizing 

signal transitions.  Clock gating is effective at preventing signal toggling in situations 

where portions of a circuit can be temporarily disabled.  For example, adding a zero 

detection/bypass element allows a multiplier circuit to be disabled whenever any input 

value is zero [37].  Various techniques have been applied to achieve spurious toggle 

reduction by avoiding calculations that are inconsequential.  Guo, et al. applied such a 

method to an FPGA implementation of the Viterbi decoder and achieved nearly 50% 

reduction in power [73].  However, clock gating and similar techniques introduce 

additional clock skew, which limits the maximum clock speed and may increase glitching 

effects. 

Another major cause of dynamic power consumption is glitching.  Glitches occur 

when unequal delay paths cause a signal to toggle several times before settling to the 

desired value.  As shown in Figure 3.1 below for a hypothetical circuit, these delays 

cause downstream elements to undergo more toggling than a zero-delay model would 

indicate.  In this example, each logic gate is modeled as having a unit-delay and the input 

vector is assumed to change instantaneously from (0110) to (1101) at time t=0.  The 

longest path passes through three logic elements, so the output is not guaranteed valid 
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until time t=3.  For this example, the output F undergoes one extra low-to-high and one 

extra high-to-low transition, each of which consumes extra power.  This problem is 

amplified as a circuit’s logic depth increases.  While unequal delay through different 

circuit paths is inevitable, glitching can be somewhat controlled.  Pipelining, delay 

equalization buffers [36] and asynchronous enable signals [78] can minimize the 

propagation length of glitches in order to conserve power. 

 

 
Figure 3.1 Example of Glitching Behavior 

 

Even the choice of number representations can affect power consumption.  In a 

traditional two’s complement number system, when values fluctuate between small 

positive and small negative numbers, many bits must toggle.  Signed magnitude number 

systems or offset value number systems can reduce this toggling and conserve power 

[79]. 

Finally, as stated earlier, dynamic power can be reduced by minimizing the 

number of nodes N in a circuit, which is equivalent to reducing the circuit’s size.  As the 

summation in Equation 3.2 is performed over fewer nodes, there are fewer contributions 

to the overall dynamic power.  This is the basic premise for reducing power costs in RPR 

designs.  Although larger circuits generally consume more power than smaller circuits, 

this is not universally true.  For example, pipelining increases circuit area, but can 

significantly reduce glitching power [78].  Thus, assessing the relationship between 

circuit size and power consumption requires careful analysis.  Chapter VI shows that 
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circuits with similar functionality and structure exhibit a strong correlation between size 

and power consumption.  Using several test circuits computing the same function, the 

non-pipelined circuits have a roughly linear relationship between size and power.  The 

larger pipelined circuits require considerably more power, but are more efficient in terms 

of energy usage per calculation. 

 

C. IMPACT OF FAULT TOLERANCE ON POWER USAGE 
Although the preceding sections describe power issues that apply to FPGA 

circuits in general, this dissertation seeks to identify power efficient methods of achieving 

SEU fault tolerance.  Furthermore, this research focuses on design optimizations that can 

be applied to commercially available FPGAs using current semiconductor technologies.  

As explained in the previous section, this constraint implies that efforts should focus on 

reducing dynamic power.  If future FPGAs include features such as standby mode 

switches for reducing leakage current, it will become relevant to address static power as 

well. 

In fault-tolerant designs, overall power consumption is strongly affected by the 

type and degree of redundancy.  Generally speaking, the extensive redundancy structures 

needed to achieve high levels of fault tolerance consume more power.  The main focus of 

this dissertation is assessing the effectiveness and efficiency of the RPR architecture.  It 

is hypothesized that because RPR designs can be much smaller than TMR designs, the 

power savings will outweigh the degradation in data precision and/or fault tolerance for 

many applications. 

 

1. Power Cost of TMR 

As the most common approach for providing SEU tolerance in FPGAs, TMR 

serves as a good baseline for comparing various alternatives.  A full TMR 

implementation includes three complete copies of the functional circuit and a voting 

mechanism.  Thus, one would expect that the power consumption with TMR is more than 

3 times that of the unprotected circuit. 

Indeed, researchers at Brigham Young University and Los Alamos National 

Laboratory have confirmed that TMR designs on FPGAs require roughly triple the power 
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[9].  Their studies included both computer simulations (using precise timing models from 

ModelSim combined with device models in Xilinx’s XPower software) and hardware 

measurements (using a Virtex test setup called JPower built at BYU).  Testing several 

designs consisting of incrementers, counters, an 8-bit CPU and a QPSK demodulator, 

they found a 3x-7x increase in power consumption.  Much of the reason for this large 

variability was due to design-placement dependencies.  Better power efficiency was 

observed for compact design layouts, whereas layouts with components placed far apart 

consumed dramatically more power.  Rollins’ [9] main conclusion was that with careful 

design placement, TMR used approximately triple the power. 

Their results also indicate that for smaller circuits, and especially the latest 

generation FPGAs, static power dominates at low operating frequencies.  Again, this is 

because all portions of current FPGAs draw static current whether or not they contribute 

to the circuit functionality.  At low clock frequencies, there is relatively little dynamic 

activity so dynamic power is less significant.  At higher operating frequencies, dynamic 

power dominates and the latest generation devices with small feature sizes offer better 

overall power performance because of their smaller geometries. 

 

2. Alternative Solutions 
Several researchers have looked at alternatives to TMR that reduce the power cost 

of fault tolerance.  Some of these approaches involve modification of the underlying 

FPGA architecture, while others are appropriate for use with standard devices.  In 

general, fault tolerance and power efficiency are conflicting goals so designers must 

strike a balance in the spectrum of design options. 

Maheshwari, et al., investigated architectural and circuit-level optimizations for 

general VLSI circuits in [29].  Since FPGAs are essentially VLSI devices, such 

optimizations are applicable to the problems investigated in this dissertation.  Part of their 

research compared the effectiveness and efficiency of area-redundant and time-redundant 

architectures.  Their dual modular redundant (DMR) and time redundant designs both 

yielded a 7x-9x improvement in mean time to failure (MTTF) while consuming 2.3x-2.9x 

the power of the unprotected circuit.  They found that time redundancy uses less power 

since it only recomputes results that fail an error check.  A major concern with applying 
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their approach to FPGA circuits is the assumption that an error detection unit can be 

constructed and always operated correctly.  For complicated circuits the error detection 

unit may be very difficult to create and will consume additional power.  Furthermore, in a 

radiation environment the error detector is also susceptible to faults and will not always 

operate correctly. 

Maheshwari also studied various circuit-level modifications, which had much less 

affect on MTTF and power than the architectural approaches. They found that lower 

operating voltages degraded MTTF, but improved power dissipation considerably.  Using 

larger sized transistors caused marginal gains in MTTF, but huge increases in power 

consumption.  However, these types of modifications are not possible with currently 

available FPGA technology.  Therefore, circuit-level modifications would be most useful 

for future generations of FPGA devices. 

Others have investigated the use of temporal redundancy to reduce overhead costs 

of fault tolerance.  In [41], a combination of spatial and temporal redundancy is used to 

reduce area and input/output pin counts, and consequently the power dissipation of a 

circuit.  Their approach is essentially DMR with the addition of delay registers and 

triplicated voters.  Even though they show less area and pin usage than TMR, their 

approach uses more than twice the area of the unprotected circuit.  Therefore, one would 

expect their design to require roughly twice the power.  Furthermore, although this 

approach can identify which computation unit experiences a transient fault, permanent 

faults can only be detected and not isolated to a particular module.  Thus, this architecture 

provides much less comprehensive fault tolerance than TMR.  

Another way of creating more efficient fault-tolerant designs is to optimize 

particular circuit structures that occur frequently.  Tiwari and Tomko studied the fault 

tolerance and overhead costs of different FPGA implementations of finite state machines 

[80].  By implementing state machine functions in an FPGA’s synchronous embedded 

memory blocks (e.g., Virtex BlockRAM) and using a combination of parity bits and 

internal/external memory scrubbing, they demonstrate lower power than a typical TMR 

design using triplication of CLB logic and routing.  They assume that faults in the routing 

and other FPGA circuitry are corrected by configuration scrubbing.  However, this 

approach may allow SEU-induced errors to persist for a considerable amount of time.  
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Furthermore, although the proposed architecture saves size and power, their designs still 

require between 66% and 92% of the TMR power levels. 

 

3. Power Advantages of RPR 
The reduced precision redundancy (RPR) approach presented in Chapter II holds 

the promise of significantly reduced power consumption compared to TMR and other 

alternatives.  Lower power consumption is enabled in several ways by the RPR 

architecture.  First, the smaller circuits needed for the redundant modules, in general, will 

use considerably less power than the full precision module.  The exact amount of this 

power reduction will depend on the particular computation being performed and the 

degree of precision used in the redundant modules.  Secondly, the inherent design 

diversity in the redundant modules permits exploration of additional power optimizations 

not possible with normal TMR.  Since the redundant calculations can be designed 

differently than the full precision calculation, there is flexibility in applying low power 

techniques to each module individually.  Finally, these power optimizations are easier 

than in TMR since the redundant modules are smaller and simpler. 

An integral part of this research is the demonstration of the potential power 

savings of an RPR design.  Given an original full precision circuit, the designer has 

several options for the redundant calculations.  First, the same methodology can be used 

and simply scaled to match the data precision desired.  The CORDIC algorithm (see 

Chapter V) is a good example of a circuit that can be easily scaled using the same basic 

architecture.  Second, a table lookup method can be used if the required precision of the 

approximate calculations is reasonably low (between 8- and 12-bit precision is reasonable 

for the CFTP experiment).  Table lookup is often impractical for the full precision 

calculation due to the enormous memory requirements, but in the approximate calculation 

this may be a more reasonable option.  Modern FPGAs have significant on-chip memory 

resources to enable such an approach.  Each Virtex FPGA used on the CFTP board has 

nearly 40 KB of RAM capacity, though 70% of this capacity must be shared with LUT-

based logic functions.  If the remaining 30% were used for table lookup, two 12-bit 

addressable 12-bit wide tables could be constructed.  Third, the redundant modules can 

use completely different computation methods than the full precision module.  Since the 
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timing constraints will typically be limited by the full-precision module, the redundant 

calculations have a relatively generous timing allotment for computing less precise 

results.  This opens many more possibilities for the designer.  This diversity also offers 

protection against certain design flaws that could lead to common-mode failures in TMR. 

RPR is expected to show considerable power advantages in many applications.  

The size reduction of an RPR architecture will, in theory, offer benefits in both static and 

dynamic power consumption.  As a rough estimate, one can assume this power reduction 

is proportional to the size reduction achieved by using the smaller redundant modules of 

RPR.  When using current FPGA technology, however, static power is a fixed value for a 

given device size.  Thus RPR will improve static power only in cases where a larger 

TMR design would require using a larger FPGA device.  Therefore, this dissertation 

focuses on techniques to reduce dynamic power using the RPR approach. 

Chapter VI quantifies this power reduction for several sample designs using data 

from high-fidelity power simulations.  RPR versions of three different CORDIC 

algorithm implementations were constructed using between 37% and 46% as much area 

as the corresponding TMR versions.  Power simulations reveal that the RPR circuits 

require between 37% and 61% of the TMR total power levels.  The dynamic power ratios 

range from 32-52%.  These results verify that circuit size is correlated with power 

consumption, and show that reducing circuit size can effectively decrease power usage. 
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IV. DEVELOPMENT OF A TOTAL PERFORMANCE METRIC 

A. OBJECTIVE 
This chapter presents a methodology for assessing the relative merit of diverse 

solutions to a design problem.  In particular, it is suitable for comparing RPR designs to 

TMR and other approaches.  While stressing the importance of fault tolerance, this 

methodology also accounts for practical design issues such as power consumption and 

chip area.  This method provides designers with a tool for selecting efficient and reliable 

solutions. 

 

B. CONCEPT 
To objectively assess competing design alternatives, a mathematical framework 

must be established for balancing various design parameters such as power, area, 

accuracy, and reliability.  The typical engineering design process begins with a set of 

design constraints and focuses on optimizing only one or a few performance metrics.  For 

example, an engineer tasked to design an FFT processing engine is given design 

specifications (usually max/min values) that dictate board/chip area, power consumption, 

accuracy, latency, throughput, etc.  The engineer then creates a design that meets all the 

specifications (often right up to the max/min levels) and optimizes the most important 

performance criteria for the design.  The problem with this process is that focusing on 

only one or a few key criteria, which are often determined subjectively, can obscure 

potential solutions that optimize the design at a global system level.  This process can be 

improved by employing a more structured mathematical analysis and expanding the 

number of variables that can be traded off against one another. 

The key step in this kind of mathematical analysis is developing honest and 

understandable cost/benefit functions.  This often involves both subjective and objective 

criteria.  Rather than operating independently, a system engineer often works within a 

team and interacts with colleagues.  The expertise and experience brought by these 

outside sources help formulate cost/benefit criteria that lead to a truly “optimal” system 

design.  By developing performance metrics like those in the following sections, the 
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system engineer creates a well-documented design process that can be discussed and 

refined.  As the technologies, customers, market competitors, and other factors change, 

this performance metric tool can help determine the best evolutionary path for a system.  

The flexible and dynamic nature of FPGAs make them particularly amenable to an 

evolutionary design paradigm.  Fine-grained configurability and capability for rapid 

reconfiguration allow the balance between, for example, power and fault tolerance to be 

dynamically “re-optimized” in FPGA-based systems. 

 

C. TOTAL PERFORMANCE METRIC 

1. Background 
The use of structured methods for evaluating design trade-offs has long been 

recognized as an important engineering practice.  However, as noted in [38] it is 

extremely difficult to combine performance criteria such as speed, power, simplicity, etc. 

and produce a “single cost function” for guiding system development.  Furthermore, fault 

tolerance is not typically considered as simply another parameter in this trade-off process.  

More commonly, in high-reliability systems fault tolerance is considered the preeminent 

design goal [21].  This line of thinking can preclude solutions that involve modest 

sacrifices in reliability but yield substantial gains in speed, efficiency, etc.  In particular, 

the impact of high-reliability (achieved with spatial and/or temporal redundancy) on the 

power consumption of a system historically has not been a major concern.   

In recent years, however, there has been more interest is determining and 

minimizing the cost of fault tolerance.  For example, a recent paper by Maheshwari, 

Burleson and Tessier [29] identifies both fault tolerance and low-power as key design 

objectives and proposes trade-offs between these two parameters.  Their work focuses on 

VLSI implementation of simple binary counters.  They investigate the impacts of 

including spatial/temporal redundancy, varying transistor dimensions, redesigning circuit 

elements and several power reduction techniques.  However, this work did not involve 

quantifying fault tolerance and power on a common basis to form an all-encompassing 

performance metric. 

 



59 

Wang, Ramamritham and Stankovic [81] discuss the idea of a single all-inclusive 

performance metric.  They present a mathematical framework for optimizing the 

performance of fault-tolerant real-time computing systems.  By balancing reliability 

(gained through task replication) and performance (gained through task completion), an 

overall “performance index” can be optimized.  One of the unique observations from that 

paper is that a particular computational task has both a “reward” value for being 

completed and a “penalty” value when it is not completed.  By quantifying these 

reward/penalty values and knowing the expected processor failure rate, one can 

determine the optimal degree of redundancy that maximizes the performance index.  

Increasing the redundancy of certain tasks consumes limited resources, processors in 

Wang’s problem, and can degrade the overall performance by inhibiting the completion 

of other tasks.  Though some of the assumptions, goals and constraints in [81] differ from 

those addressed in this dissertation, the basic philosophy of a quantifiable “performance 

index” is important in both studies. 

Since every measurable performance criteria has some benefit or cost to the 

overall design, it is important to quantify these values for as many metrics as possible.  

The following sections and figures explain the general behavior of the most common 

performance metrics.  The graphs in sections 2 and 3 are not intended to represent the 

relative costs/benefits for each parameter, but to show the behavior of each parameter 

individually.  The relative values of these parameters depend on the particular system 

being developed and require careful scrutiny of the system’s overall objectives.  Section 6 

presents a detailed example showing how to determine relative weights for each metric. 

 

2. Cost Metrics 

Figure 4.1 shows several typical cost metrics for FPGA systems.  Although many 

different cost factors may be applicable to a particular design and application, the metrics 

described here should be appropriate for most situations.  Note that in all cases the costs 

are monotonically increasing functions of each parameter.  The x-axis represents the 

value of each parameter while the y-axis shows the parameterized costs.  The relative 

importance of each cost parameter is addressed through scaling factors that can be 

customized for each application.  The following paragraphs explain the rationale for the 
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curves shown in Figure 4.1, based on the scenario of an FPGA-based computing system 

designed for spacecraft use.  This discussion could easily be extended to other 

technologies and applications. 

 

 
Figure 4.1 Hypothetical Cost Curves 

 

The physical area of a circuit is important because in space applications circuit 

board area and total volume must be conserved to meet system-level constraints.  Circuits 

that use very little area can be more easily accommodated in the system and allow other 

functions to share a single board and/or chip.  The linear portions of the curve indicate 

that as a circuit grows it consumes more of the finite resources in the FPGA and prevents 

other functions from being integrated into the same chip.  The discontinuities in the curve 

occur when a design exceeds the capacity of a certain chip and requires the use of the 

next larger device in the product family.  At each break in the curve, the design moves 

into a larger and more “costly” FPGA.  This may require using a more advanced chip 

with an equal footprint but higher price, or an entirely different package requiring board-

level redesign. 

Pin count is often another significant constraint [41] and its cost curve behaves 

similarly to that of area.  The discontinuities in the curve represent jumps when switching 

between various devices in a particular product line.  For example, Xilinx’s Virtex 

XCV600 products (all containing the same internal semiconductor device) are 

commercially available in 240-, 432-, 560-, 676- and 680-pin packages.  Pin count is 

becoming even more of a concern as semiconductor device technology is shrinking at a 

faster rate than I/O pin density is increasing.  Circuit functionality is generally 

proportional to chip area, whereas pin count is usually proportional to a chip’s perimeter.  
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Designers have attempted to get around this with unique packaging techniques, such as 

ball grid arrays (BGAs), although even BGA designs are limited by the physical size of 

the solder balls and routability from the chip to the package exterior [82].  Despite 

packaging innovations, I/O pin count continues to be a limiting factor. 

Power consumption is an especially significant concern in remote applications 

such as spacecraft.  The cost of using more power typically increases linearly.  As a 

circuit consumes a larger fraction of the spacecraft power budget it prevents other 

subsystems from receiving the necessary amount of power.  At some point the circuit will 

require more power than is available and the power cost will skyrocket, as shown on the 

graph as a discontinuity.  As an extreme example, the circuit may need more power than 

the entire spacecraft power system can supply, requiring drastic and costly measures such 

as increasing the size of the spacecraft solar panels. 

Another cost factor is a circuit’s latency, or the time required to produce a desired 

result.  A similar metric is throughput, which is the number of calculations completed in a 

given time period.  While throughput is most easily thought of as a benefit, latency is 

more identifiable as a cost.  Although latency and throughput are closely related, it may 

be instructive to consider them separately.  For example, in pipelined systems high 

throughput may be sustained by high clock speeds even though very long latencies from 

“deep” pipelining produce results many clock cycles after the inputs are given to the 

circuit.  In non-pipelined systems long computation periods directly affect throughput by 

limiting the total number of results that can be produced in a finite time period.  Whether 

it is appropriate to account for latency and throughput separately depends on the 

particular system being considered. 

At low latency values this cost is best represented as a linear function, but at 

longer latencies the cost rises quickly since many systems require rapid data processing 

in order to work well.  This behavior can be best captured by an exponential shape, as 

shown in Figure 4.1.  For example, control systems are often most effective when latency 

is minimized.  A control system can tolerate some latency with relatively little cost or 

degradation.  However, extremely slow computations may require significant redesign of 

the control system, such as including prediction algorithms to anticipate the system state 

when control commands are actually issued. 
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Combining these various costs, the total cost metric in this example is defined as: 

 latencypowerpinareatotal CCCC ++= +  (4.1) 

The optimal, but unrealistic, design cost would be zero.  Zero cost can be achieved only 

with a design that requires no area or I/O pins, consumes no power, and produces results 

instantaneously.  In reality, all circuits have some non-zero cost associated with them.  

Cost metrics other than those described here may be more significant to a particular 

problem and can augment or replace terms in the preceding equation.  In addition, the 

cost functions for a particular situation may not follow the shapes presented here.  

Therefore, it is important to identify the appropriate cost metrics for a given situation and 

make reasonable assumptions about their functional behavior.  This information can then 

be combined with the benefit functions described below to generate a total performance 

metric. 

 

3. Benefit Metrics 
Benefits can also be described in terms of various performance metrics for a given 

design.  Continuing with the scenario of a spacecraft computer, Figure 4.2 shows some of 

the more common benefit measures.  Similar to the cost functions, each benefit term is 

assumed to be monotonically increasing.  The following paragraphs describe each of 

these in more detail.  These benefit metrics are appropriate in most situations and can 

easily be augmented with other parameters important to a particular design. 

 
 

Figure 4.2 Hypothetical Benefit Curves 
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A critical performance metric in this research is reliability.  Reliability can be 

defined and measured in many ways, such as mean time to failure (MTTF), mean time 

between error (MTBE), or probability of survival [40].  This dissertation assumes that 

faults result only from SEUs.  A standard assumption is that SEUs are random, 

uncorrelated events that follow a Poisson distribution [17] due to the interaction of high-

energy particles with the semiconductor device.  The reliability metric must account for 

this random process.  A key part of estimating reliability is knowing the probability of 

experiencing a certain number (k) of SEUs in a given time interval (t), as given by [17]: 
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In order to prevent the accumulation of SEU-induced faults in FPGAs, 

configuration scrubbing must be employed.  The Xilinx Virtex FPGA family used in this 

research is capable of on-line partial reconfiguration, which permits rapid correction of 

configuration faults.  Coupled with fault detection circuitry, this capability ensures that 

the system returns to its original fault-free condition soon after each SEU.  Therefore, 

MTBE (MTBE = MTTE + MTTR) may be an appropriate metric since it considers both 

the fundamental failure mechanism via MTTE (mean time to error) and the recovery 

mechanism via MTTR (mean time to repair) [40].  In most orbital regimes MTTE is 

much longer than MTTR and therefore either MTBE or MTTE could be used. 

As shown in the figure, the reliability term shows a strong logarithmic-like 

behavior.  At lower reliability levels, there is very little benefit from a system that fails 

often, but the benefit increases sharply for even modest increases in MTBE.  At higher 

levels, the relative benefit of increasing MTBE tapers off considerably.  For example, 

there would probably be little to gain from increasing a spacecraft computer’s MTBE 

from 100 years to 1000 years since even long-lived spacecraft only last 10-15 years. 

Since the primary purpose of a computer circuit is to provide output values based 

on some function of the inputs, an essential metric is the quantity of results produced, or 

throughput.  Implicit in the concept of throughput is the assumption that each solution 

produced is accurate.  For our purposes, accurate means the result is a true representation 

of the error-free calculation to the circuit’s designed level of precision.  As shown in the 

figure, the system derives more benefit when the circuit provides more results.  This 
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relationship is usually linear, though it is possible that the “law of diminishing returns” 

would be seen beyond a certain point.  For example, increasing the refresh cycle on a 

computer display from 60 Hz to 100 Hz provides essentially no additional benefit 

because the human observer can’t distinguish frame rates above 30 Hz.  Another feature 

to note from the figure is that at the lower performance levels the benefit may actually be 

negative.  This reflects the fact that often there is a minimum acceptable performance 

threshold.  Below this threshold, it would be better to not even use the computer.  For 

example, consider a computerized automobile data display that calculates speed, gas 

mileage and range-until-empty.  If due to some terrible engineering oversight, the range-

until-empty calculation was only updated on January 1st of each year, consumers would 

probably rather not have that feature. 

Another key performance criteria is the precision of outputs.  With few 

exceptions, more precise results are better than less precise results.  This benefit term also 

generally has a minimum threshold and an improvement roll-off at higher levels, as 

shown in the figure above.  The shape of this curve could change depending on the units 

chosen.  For example, if precision is measured in terms of real numbers, the function may 

be mostly linear over most of its range.  However, if precision is measured by number of 

binary digits in the number representation, then the curve may look more exponential. 

Combining these various benefits, the total benefit metric is given by: 

 yreliabilitprecisionthroughputtotal BBBB ++=  (4.3) 

As written above, this function theoretically has no upper bound.  However, as explained 

earlier, all of these terms have an asymptotic upper limit that constrains the total benefit 

function. 

 

4. Total Performance Metric 
Combining the various benefits and costs from the preceding sections, an overall 

total performance metric (TPM) can be defined as: 
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This general expression allows the inclusion of factors in addition to or instead of those 

described earlier.  In order to relate these diverse parameters, scaling factors K are 

included to reflect the relative importance of each term.  The overall performance value is 

extremely sensitive to these scaling factors, so they must be determined with great care. 

Costs and benefits can be evaluated in terms of average values or cumulative 

values over some finite time interval.  The detailed example that follows is based on an 

average value formulation whereas the approach taken in [81] follows the cumulative 

value formulation.  The cumulative value approach works well in [81] since the authors 

have a well-defined task set of finite size. The average value approach works better with 

metrics such as power and throughput that are already defined as average values. 

 

5. Example 1: Generating TPM (Satellite Attitude Control) 
Assume that a satellite attitude control system requires a coprocessor that 

calculates the trigonometric functions sine and cosine to determine commands for 

maintaining satellite orientation and stability.  The top-level design specifications for this 

hypothetical example are as follows: 

 precision < 10-9 
 speed > 1 MHz 
 power < 1 W 
 size < ½ of a Virtex XQVR600 FPGA 
 

The design team for this coprocessor has identified the following as the most 

significant performance factors: speed, precision, reliability, area, latency and power.  In 

order to quantify the trade-offs between various design choices, each performance factor 

is translated into mathematical expressions as described below. 

The physical size of the circuit must be less than half of the predefined FPGA 

device.  Such a specific constraint could be negotiable if the subsystem designers have 

convincing arguments demonstrating that another device provides better overall 

performance or that a slight increase in area usage yields improvement in other factors.  

Nonetheless, the normalized area cost can be expressed as a linear function as discussed 

in Section 2.  By measuring area as a fraction of the total FPGA resources, area cost is 

given by the expression below.  The scaling factor α ensures that the area cost equals one 
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when the area usage is at the design spec of 1/2.  Normalizing costs and benefits allows 

the relative importance of each criteria to be easily adjusted using the scaling factors K. 

 2     with == ααACA  (4.5) 

Though not explicitly given as a design specification, a latency requirement can 

be inferred from the speed requirement.  Taking the inverse of 1 MHz and assuming a 

non-pipelined circuit, one derives a maximum latency of 1 microsecond.  However, this 

derived value may not adequately address the total system needs.  Further discussions 

with the satellite control system design team are necessary to determine whether longer 

latency may be acceptable, in which case pipelining may be an option.  Prior to these 

discussions, however, a linear latency cost function can be used.  With cost normalized to 

1 at the derived design spec of 1 µsec, the following function is used: 

 16 sec 10     with −== λλLCL  (4.6) 

The power requirement is fairly straightforward, though this may also be 

negotiable.  Assuming that the circuit’s power consumption is reasonable, the power cost 

function should follow the linear portion of the curve shown in Figure 4.1.  As discussed 

in Chapter III, dynamic power is often directly related to circuit size.  Although static 

power is constant for a given FPGA device, the fraction of static power attributable to a 

particular function can also be related to that function’s size.  A linear relationship 

between area and power is used to simplify the analysis.  Normalizing the cost at 1 watt 

of power consumption leads to the following relationships: 
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To evaluate the first benefit factor, speed is seen as synonymous with the 

throughput parameter from Figure 4.2 above.  It is assumed that every result produced by 

the circuit is correct.  The possibility of faulty solutions is subsumed in the reliability 

factor derived later.  Various functions could be used to reflect the key features of a fairly 

linear behavior at low values and an asymptotic behavior at high values.  The formula 

below is useful because it allows simple manipulation of slopes, “breakpoint” and 
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asymptote level.  This equation is normalized to 1 at a solution rate of 106 per second and 

the asymptote βS was arbitrarily chosen as 2.  For simplicity, the constants are defined by 

small integers that create a curve reflecting the benefit’s anticipated behavior as speed 

increases. When using this method for a specific application, these constants must be 

carefully defined based on the particular specifications and behavior of the design. 

 -610,3,3,2     with ====⋅−= − σηβηβ σ bbB SS
S

SSS  (4.8) 

The next benefit factor to address is numerical precision.  From the design spec of 

better than 10-9 accuracy, the circuit must calculate results with at least 30 bits in the 

fractional part of each number.  Thus the formula for precision is normalized to 1 at the 

level of 30 bits.  Below 30 bits of precision, the value drops quickly as the control system 

loses the ability to make precise attitude and orientation decisions.  However, above 30 

bits there is little more to gain since the attitude/orientation sensors and actuators become 

limitations at such high levels of precision.  Thus an asymptote of 1.2 was selected since 

there is relatively little room for improvement beyond 30 bits.  The following equation 

serves as a starting point for assessing the benefit of high precision.  In the equation N is 

the number of fractional bits in each solution.  The exact shape of the curve is sensitive to 

the exponent base as well as the asymptote and scaling constants. 

 033.0,20,4,2.1     with ====⋅−= − νηβηβ ν bbB NN
N

NNN  (4.9) 

The final parameter to quantify is reliability, which was not specified as an 

original system requirement.  Thus, additional information will be needed for the final 

system design.  In the absence of details, however, a preliminary reliability estimate can 

be made based on the following assumptions.  The only reliability issue considered is 

radiation-induced logic upsets (i.e., SEUs), though additional issues could easily be 

included.  Reliability is measured by the mean time between error (MTBE) and errors are 

assumed to occur whenever an SEU affects a non-redundant portion of the circuit.  Since 

the satellite control system operates continuously, the sine/cosine coprocessor needs to 

operate constantly throughout the satellite’s lifetime of roughly 10 years.  Finally, it is 

assumed that most errors cause serious, but not catastrophic, problems.  Calculation 

errors in the sine/cosine coprocessor can necessitate a time-consuming reorientation of 
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the spacecraft and subsequent mission interruption, but they are not expected to lead to 

total loss of the spacecraft. 

These assumptions are used to formulate an equation describing the benefit of 

reliability.  At low reliability levels the system will require frequent reorientation 

maneuvers, preventing the spacecraft from conducting much of its mission.  High 

reliability is obviously good, though extremely high reliability may not be cost effective 

compared to more modest reliability levels.  Over a 10-year mission lifetime it is 

reasonable to assume that a small number of recoverable errors, for example one per year, 

is acceptable.  Thus the reliability benefit function given below follows an inverse 

exponential curve and is normalized to 1 for a MTBE of one year.  With adequate fault 

masking, it is reasonable to expect MTBE values in the range of months or longer in LEO 

environments and shorter MTBE in higher radiation environments. 

 1year 1,6,2.1,2.1     with −− ====⋅−= ρηβηβ ρ bbB RR
R

RRR  (4.10) 

Combining all 6 benefit and cost factors explored in this hypothetical example, 

TPM is given by: 

 PCLCACRBNBSB CKCKCKBKBKBKTPM
PLARNS

−−−++=  (4.11) 

Note that TPM is a unitless quantity since the benefit and cost terms are all normalized 

quantities. 

The final step in generating the total performance metric is to establish the 

relative importance of each factor by determining the scaling factors K.  A starting point 

might be to assume that all factors are equally important, in which case each K can be set 

to 1.  More realistically, some factors are more important than others.  For illustrative 

purposes, Table 4.1 presents scaling factors for three different prioritization schemes.  

Scheme A assumes all factors are equally important, Scheme B emphasizes reliability, 

and Scheme C emphasizes precision. 
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Prioritization Scheme Factor 
A B C 

Speed (S) 1 1 0.5 
Precision (N) 1 1 2 
Reliability (R) 1 2 1 

Area (A) 1 0.5 1 
Latency (L) 1 1 0.5 
Power (P) 1 0.5 1 

 
Table 4.1 Possible Cost/Benefit Prioritization Schemes 

 

For illustrative purposes, the figure below shows the behavior of each parameter 

using the scaling factors from prioritization scheme B.  The x-axis labels represent 

various levels of each parameter relative to the design specification or derived 

requirements discussed earlier.  For example, “1x Spec” corresponds to: 

 speed = 1 MHz 
 precision = 10-9 
 reliability = 1 year MTBE 
 size = ½ of a Virtex XQVR600 FPGA 
 latency = 1 µsec 
 power = 1 W 
 

 
Figure 4.3 Hypothetical Functional Behavior of TPM Components 
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Though interesting, this figure cannot be used directly to make trade-offs between 

the various design parameters.  One cannot simply move along each curve independently 

since the parameters are strongly related to one another.  In this example, area and power 

have a simple linear relationships.  However, the interactions between power-reliability 

or precision-latency, for example, are difficult to anticipate accurately.  With a practically 

infinite design solution space, an exhaustive analysis is impractical.  Instead, it is more 

reasonable to investigate a small number of points that span the design space.  The results 

from these early predictions can help focus and refine the more detailed design and 

analysis work. 

To conclude this example, the TPM is calculated for several plausible design 

solutions using each of the prioritization schemes listed in Table 4.1.  Based on some of 

the assumptions used in this example, the design space can be divided into four factors.  

Table 4.2 below lists the factors used in this analysis and the TPM values calculated from 

the equations derived above.  Since area and power are directly related in this example, a 

single “size” factor can be used, with “large” meaning a circuit twice the specification 

value and “small” meaning a circuit half the specification value.  For simplicity, latency 

and throughput can likewise be combined into a “speed” factor.  Thus “fast” corresponds 

to latency of half specification and throughput of twice specification, and “slow” means 

these terms are swapped.  Precision and reliability cannot be easily combined with other 

factors, so they are treated separately.  For these two factors, “high” represents twice the 

spec and “low” means half the spec.  For added realism, the shaded regions in the table 

represent design points that the engineering team predicts cannot be achieved.  Thus these 

TPM values are unattainable.  From the remaining design options, the best designs for 

each prioritization scheme are highlighted. 
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   Low Reliab. High Reliab. 

   A B C A B C 

Slow -1.7 -0.5 -0.6 -1.3 0.4 -0.1 
Small 

Fast 1.2 2.4 0.9 1.6 3.3 1.3 

Slow -4.7 -2.0 -3.6 -4.3 -1.1 -3.1 

Low 

Precision 
Large 

Fast -1.8 0.9 -2.1 -1.4 1.8 -1.7 

Slow -0.8 0.4 1.2 -0.4 1.3 1.7 
Small 

Fast 2.1 3.3 2.7 2.5 4.2 3.1 

Slow -3.8 -1.1 -1.8 -3.4 -0.2 -1.3 

High 

Precision 
Large 

Fast -0.9 1.8 -0.3 -0.5 2.7 0.1 

 
Table 4.2 Hypothetical TPM for Various Design Points 

 

6. Example 2: Determining K Factors (Satellite Image Processing) 
As highlighted in the previous example, the scaling factors K heavily influence 

the TPM.  Different K weighting schemes lead to different conclusions about which 

solution is optimal.  Therefore it is important to determine them carefully based on the 

context of the particular design problem.  The K factors serve two primary roles.  First, 

they influence the slope of the TPM as a function of each parameter around the nominal 

design point.  Secondly, they establish the relative value of the cost/benefit parameters at 

extreme high/low values.  The following example describes in more detail the types of 

considerations that help establish these K factors.  Keep in mind that the K values could 

differ greatly for a given design depending on the application. 

In this hypothetical example, the task is to build an image compression processor 

for a commercial satellite imaging system in order to reduce the data downlink bandwidth 

requirements.  The satellite’s main function is to collect visible and infrared images of 

specific ground locations for customers such as governments, regulatory agencies, 

farmers and private landowners.  The business model for such a product has been well 

established by satellite operators such as Space Imaging (IKONOS) and DigitalGlobe 

(QuickBird).  In this scenario there is a strong financial motivation for developing cost 

effective solutions.  Therefore it is worth considering options that may sacrifice some 

degree of reliability or precision in order to reduce the costs involved.  On the other hand, 
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it is important to sustain the collection, processing and delivery of imagery products.  The 

company can only make money as long as it continues to provide images to customers. 

The same performance factors used in the previous example are also applicable to 

this design.  Similarly, the reliability efforts here focus on tolerating radiation-induced 

SEUs.  A plausible prioritization scheme for the TPM factors is listed in Table 4.3.  The 

following paragraphs explain the reasons for assigning these particular K values. 

 

Factor Scaling Factor 
(K) 

Throughput 40 
Reliability 10 
Precision 8 

Power 2 
Area 2 

Latency 1 
 

Table 4.3 Example Cost/Benefit Relative Weighting Factors 
  

The following discussion focuses on the behavior of each parameter around the 

nominal design solution, called the “1x Spec” point in the previous example.  The 

baseline specification is given as: 

 throughput = 1 Hz 
 reliability = 90% 
 precision = 16 bits 
 area = 1 Virtex XQVR600 FPGA 
 power = 5 W 
 latency = 1 sec 
 

For simplicity, assume that all parameters behave linearly and with equal slopes 

near this point.  Thus only the K factors alter the slope of each cost or benefit term.  For 

example, the K values determine whether or not a 10% improvement in precision is more 

beneficial than a 10% improvement in area. 

Throughput is the most important design criteria.  As mentioned earlier, the 

mission of the spacecraft is to produce images, thus the ability to maintain a high data 

rate is essential for maximizing revenue.  A large K value for this factor ensures that the 

design does not sacrifice throughput.  The value 40 that appears in the table, though 
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arbitrary, was selected to accommodate integer values for the remaining K factors.  There 

is no requirement that integers be selected for these scaling factors, but they are used here 

for simplicity. 

Reliability is the second most important parameter since low reliability can lead to 

several negative consequences.  First, it degrades the satellite’s ability to collect and 

transmit images on demand and therefore reduces the effective data throughput.  If 

failures coincide with actual imaging operations, valuable image data will be lost.  

Additional data collections may need to be scheduled for subsequent orbits in order to 

satisfy customer demands, which in turn will limit the number of customer requests that 

can be satisfied.  Furthermore, customers may become displeased and turn to other 

service providers. 

In this hypothetical system, a 90% reliability is required by the baseline system 

specification.  Thus for every 100 images collected, 90 of them should be properly 

processed and transmitted.  The following figure shows what happens to the data output 

rate when the processing throughput and reliability are individually reduced to one-half 

the specification level.  As can be seen, reducing throughput by half while reliability 

stays at 90% causes the data rate to drop to 45 (a decrease of 45 images).  By comparison, 

a reliability reduction of half while throughput remains at 100 decreases the data rate to 

80 (a decrease of 10 images in the same time interval).  The slope for throughput should 

be steeper than for reliability since its impact was much greater (reducing the data image 

rate by 45 versus 10).  Therefore for this application, reliability is assessed to be roughly 

one-quarter as important as throughput, and is assigned the K value 10. 

 
 

Figure 4.4 Hypothetical Benefit Curves 
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Precision is an important TPM component in this example since it determines the 

quality, and therefore value, of the images produced.  Considering that different 

customers have different image quality requirements, a price scale is established with 

reduced prices for lower quality images and premium prices for the highest quality 

images.  At the baseline precision level of 16 bits, the price is $5000 per image.  A 

discounted price of $4500 per image is offered for 8-bit resolution.  This price reduction 

of $500 can be considered lost revenue.  An equivalent reduction in revenue would occur 

if throughput were decreased by 10%, from 1 Hz to 0.9 Hz.  To properly weight the 

precision term, a K factor of 8 is required. 

Power and area are less important for this application than they typically are in 

satellite systems.  The amount of power and area needed for this image compression 

processor are small fractions of the overall satellite resources.  On this hypothetical 

satellite the solar panels generate an average of 500 watts, thus even large increases in 

this processor’s consumption require only modest upgrades.  A doubling of the 

processor’s power usage from 5 W to 10 W requires a 1% increase in solar panel 

capacity.  Putting this into financial terms, assume that the solar panel subsystem for the 

spacecraft costs $1M and that a 1% increase in output can be achieved for an additional 

$10,000.  For comparison, an advanced semiconductor processing technology that 

improves the SEU immunity of the device can be purchased for $10K.  This new device 

will reduce the probability of error from the baseline design level of 0.10 to 0.08, a 20% 

improvement.  Thus, in this simple example a 100% increase in power and a 20% 

increase in reliability have equal monetary value.  Since reliability has a K value of 10, 

power should be assigned the value 2 to ensure proper scaling between these terms. 

Similarly, since this processor is allocated a single FPGA chip that occupies a 

small percentage of the total satellite volume, modest increases in chip area are possible.  

If the design requires more circuitry than the baseline FPGA provides, it is also possible 

to switch to a newer, more dense device since the cost of FPGAs is small compared to the 

total program cost.  Putting chip area into financial terms, assume that upgrading from the 

baseline FPGA device to one with twice the logic capacity costs $10K.  Following the 

rationale for the power K factor, the K value for area is also 2. 
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Latency is the least important factor since customers for this type of satellite 

imagery typically have no demand for real-time data.  Although zero latency is ideal, 

reasonable amounts of latency cause little degradation.  In this application, the main 

forces limiting latency are on-board data storage and ground station access periods during 

which data is downlinked.  Some amount of data buffering can be included in the design, 

but a large amount of data storage on the satellite is undesirable.  A nominal latency 

value of 1 second is specified to match the data collection rate of 1 Hz. 

For this example, assume that the satellite operations procedure includes the 

collection of a second image of each ground location, if necessary.  If the first image is 

corrupted by clouds, sensor noise or smearing from satellite vibration, the second image 

is collected.  The decision whether or not to collect this second image is based on an 

automatic quality check on the fully-processed first image.  This quality check must be 

made within 40 seconds to ensure the satellite does not pass beyond view of the target.  A 

latency of 40 seconds or longer means that the second image must be collected on every 

target, which is equivalent to reducing the throughput by half.  Thus a K value of 1 

provides the proper weighting of this parameter. 

 

7. Accounting for Reliability Factors 
One potential problem with the parameter set described in the preceding sections 

is improper accounting of reliability.  Reliability is treated as a separate benefit factor, 

although it can influence both the “throughput” and “precision” factors.  If errors are 

infrequent it is acceptable to consider reliability separately and ignore reliability when 

estimating these other factors.  As errors become more common, however, it may be 

more appropriate to include reliability in the throughput and/or precision factors. 

It is easy to see that errors decrease the number of correct solutions produced by 

the circuit.  Thus, instead of having a separate factor, reliability could be accounted for by 

adjusting the expected number of correct solutions.  Reliability also influences the 

average numerical precision.  If an RPR implementation is chosen to achieve fault 

tolerance, some SEUs will not lead to failure but will cause the circuit to produce 

solutions with less than the full precision.  If this happens rarely, the system receives 

nearly the same quality of service as with a more comprehensive redundancy structure, 
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such as TMR.  However, if this happens relatively often, the quality of service is 

significantly degraded.  One could account for this quality factor by measuring the 

precision of each solution.  The variable N in Equation 4.9 could represent the total 

number of fractional bits (i.e., precision) for all correct solutions produced in a finite time 

period. 

SEUs in space are fairly rare in most orbital regimes.  The average time interval 

between SEUs range from minutes to hours [17] depending on altitude as well as solar 

activity and geomagnetic conditions.  In geosynchronous orbit, Bridgford predicts that 

current FPGA devices such as the Xilinx Virtex-II will be affected by 1 to 30 SEUs per 

hour [83].  Furthermore, such devices may experience SEFI-type events (i.e., SEUs that 

lead to errors requiring complete device reset and/or power cycling) only once in 60 years 

of continuous operation [83].  It would be meaningless to apply such low error rates over 

short timescales.  In a one second period there is an extremely low probability of 

experiencing an SEU-induced error.  Assuming a Poisson distribution of SEU arrivals 

[17] and an average SEU rate of 1 per hour, the probability of experiencing at least one 

SEU in a one second period is only 0.000278.  Thus the expected throughput would be 

reduced from 1,000,000 to 999,722 calculations per second and precision reduced from 

30 to 29.99 bits.  Such small numerical effects do not adequately capture the importance 

of high reliability in this situation. 

Properly accounting for reliability in the total performance metric is challenging 

and can be approached in various ways.  Assigning a benefit value to various levels of 

reliability, as done above, is appropriate for most situations.  Determining a reliability 

benefit value is impractical for certain applications, so alternative methods should be 

considered.  One approach is to create a family of cost-benefit isocurves for various 

levels of reliability as shown in Figure 4.5.  Each isocurve plots the lowest cost (x-

coordinate) design that achieves the corresponding benefit (y-coordinate), where the total 

benefit value is summed over the remaining benefit terms once reliability is isolated.  The 

system designer can examine this family of curves to find efficient design options that 

meet the desired reliability level, similar to goals stated in [43].  The knees in the curves 

in this figure are likely to be the most efficient design points. 
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Figure 4.5 Conceptual Reliability Isocurves within Cost-Benefit Design Space 

 

D. MEASURING RELIABILITY 
Whereas it is relatively straightforward to measure performance factors such as 

speed and power, determining the reliability or fault tolerance of a design can be 

challenging.  The first step is deciding which kinds of faults are expected.  Should the 

designer be concerned with only transient faults such as SEUs, or also permanent faults 

due to device fatigue and burnout?  This dissertation focuses on transient faults in an 

FPGA’s configuration memory caused by SEUs.  However, in critical applications such 

as life-support systems, all types of faults and failures should be considered [40].   

Once the class of faults has been defined, the next step is to estimate and/or 

measure the system’s response to each possible fault.  This step can be very complicated 

considering the size and complexity of modern electronic systems.  For example, in the 

Xilinx Virtex XQVR600 device there are over 3.3 million configuration bits that can be 

upset by SEUs.  If one considers the possibility of multiple simultaneous SEU-induced 

faults, the problem quickly becomes intractable.  For example, there are over 5*1012 

possible two-SEU combinations in the Virtex device!  There is no reasonable way to 

exhaustively simulate or test each of these combinations.  Virtually all FPGA fault 

tolerance studies consider only individual SEU effects.  To date, the only thorough work 

with multiple SEUs in FPGAs has mainly involved SEUs affecting physically adjacent 

bits on the device [84].  However, the preponderance of SEUs affect only a single bit.  

Therefore the fault model assumed in this dissertation is a single SEU-induced bit flip in 
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the FPGA configuration memory.  All possible single bit upsets should be thoroughly 

analyzed. 

The system’s response to each fault must be carefully monitored and categorized 

as either error-producing or non-error-producing.  Many researchers use the terms 

“sensitive” and “non-sensitive” to characterize particular configuration bits in an FPGA 

design [4], [42].  A sensitive bit is an FPGA configuration bit that causes errors in output 

data when corrupted by an SEU.  Certain data errors may only be manifested when 

particular input data patterns are applied to the circuit [4].  Therefore some faults may 

appear to be non-error-producing if testing involves only a small selection of possible 

inputs.  With large input vectors in some circuits, such as a 32-bit multiplier, it would be 

extremely time consuming to test every possible input data combination.  Thus, a 

compromise must be reached between testing a small number of inputs and testing every 

possible input combination. 

Sensitive bits can be further categorized as either “persistent” or “non-persistent” 

according to whether their impact persists after a configuration scrub [5], [8], [42], [85].  

A persistent error, such as corruption of the contents in a finite-state machine, requires 

rewriting the configuration memory and resetting the system.  Therefore SEU sensitivity 

experiments must be carefully constructed to identify and correct persistent errors as they 

occur.  Otherwise the long-term effects of persistent errors make it difficult to evaluate 

subsequent faults.  After analyzing all configuration bits for a particular FPGA design, 

the overall configuration sensitivity can be calculated as the percentage or total count of 

sensitive configuration bits.  The fault tolerance of various designs can compared based 

on this overall sensitivity.  Those with lower configuration sensitivity are likely to be 

more SEU-tolerant. 

Another challenge is deciding whether a particular fault/error leads to operational 

failure or a lesser degree of system degradation.  For example, in an RPR implementation 

many faults are likely to degrade the precision of output data.  Should this situation be 

considered a true operational error?  Perhaps an isolated occurrence of imprecise outputs 

is acceptable, but frequent and/or numerous consecutive events might be unacceptable. 

The final step is to estimate the system’s reliability by predicting its response in a 

realistic environment.  This calculation is based on anticipated fault rates (due to factors 
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such as radiation levels) and the probability that faults in the device will lead to error 

conditions.  High reliability can be achieved if the radiation conditions are benign or the 

device has low susceptibility to error-producing faults.  Conversely, low reliability occurs 

when the radiation environment is high and the device is likely to produce errors from 

many fault conditions. 

 

1. Assumptions 
The intent in this dissertation is to compare the relative reliability of various 

designs rather than calculating absolute reliability or fault tolerance values.  Therefore 

SEU sensitivity, based on the number of configuration bits capable of causing errors, is 

an adequate metric for comparing the reliability of different FPGA designs.  The 

following two sections provide additional background information on several aspects of 

determining absolute SEU rates in space. 

This analysis does not address the issue of varying SEU susceptibility of different 

FPGA structures.  As studied by Ceschia [44], the energy spectrum of radiation particles 

influences the statistics of SEUs on an FPGA.  For example, Ceschia found that LUT 

configuration bits on the Xilinx Virtex XCV300 device were the most sensitive and could 

be upset by relatively low-energy particles.  Therefore, a more accurate reliability 

estimate can be achieved by considering the radiation spectrum in the operating 

environment.  Data from [44] shows roughly a factor of 2 difference between the most 

sensitive and least sensitive FPGA elements. 

Nonetheless, sufficiently accurate results can be achieved by assuming equal 

sensitivity for all FPGA configuration bits.  Most work in the literature, such as [86], 

does not consider energy-dependent bit susceptibility since there are larger sources of 

uncertainty in reliability predictions.  For example, the actual space radiation 

environment is not precisely known and varies significantly in time.  Furthermore, the 

complex interaction within FPGA circuits causes considerable variability in measured bit 

sensitivity between different design configurations [6].  For purposes of comparing the 

reliability of competing designs it is usually safe to assume a uniform SEU susceptibility.  

Most designs with similar functionality use similar proportions of LUT, MUX, routing,  

 



80 

etc. elements [1].  Thus, the relative reliability of various design implementations can be 

assessed fairly by assuming all configuration bits are equally susceptible to radiation-

induced upset. 

 

2. SEU Rates in Space Environment 
The space radiation environment consists mostly of ions and protons of varying 

energy levels.  As discussed in [17], different equations govern the heavy ion response 

and proton response of microelectronic circuits.  Fortunately, most satellite orbital 

regimes are dominated by one radiation source or the other.  Thus predictions of on-orbit 

performance can focus on the radiation source appropriate for the spacecraft orbit.  At 

geosynchronous altitude (36,000 km) the predominant effect is due to cosmic rays, which 

are highly energetic ions of solar and extra-solar origin.  At lower altitudes, in particular 

within the lower Van Allen belt which peaks at around 10,000 km [17], [87], 

magnetospherically-trapped protons dominate.  Some typical formulas used for ion and 

proton SEU rates as presented in [17] are given below: 
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SEU rate depends strongly on the device’s geometry, composition and other 

physical parameters.  Parameters such as Qc (critical charge) and σp (proton SEU cross 

section) can be estimated analytically or, more often, measured experimentally.  Smaller 

circuit dimensions and reduced transistor switching energy in modern microelectronics 

make new devices much more susceptible to direct proton-induced SEU.  Messenger and 

Ash [17] estimate that as device feature sizes drop below 0.3 µm, this direct SEU 

phenomenon will increase dramatically.  Figure 4.6 shows estimated SEU rates for a 

notional 64 Mbit memory module in a particular orbit as the critical charge, which is a 

strong function of circuit dimensions, is varied.  



81 

 
Figure 4.6 SEU Rates for Notional 64 Mbit Memory (from [17]) 

 

Though the equations and phenomenology governing ion-induced and proton-

induced SEUs differ somewhat, upset rates due to both sources can be simplified to the 

following equation: 

 ]
scm

particles
particles

eventscm[     
2

2

×Φ⋅= radSEUSEUf σ  (4.14) 

Despite the simplicity of the equation, determining values for cross section and 

flux involves considerable effort.  Cross section must be determined for each constituent 

of the radiation environment or averaged over all particles of interest.  Flux can be 

measured in various ways, but is typically calculated as the number of particles within a 

specified energy level that pass through a given area or volume in a certain time period.  

Extensive experimentation and analytical modeling have been conducted to characterize 

the space radiation environment.  In fact, the first US satellite, Explorer 1, was launched 
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in 1958 with instrumentation developed by Dr James Van Allen that led to the discovery 

of the radiation belts.  Various computer models, such as CREME (Cosmic Ray Effects 

on Microelectronics) and others available within SPENVIS (Space Environment 

Information System), are used extensively in current radiation effects studies. The actual 

flux incident on spacecraft circuits is also influenced by spacecraft shielding effects.  

Thus, environmental flux values must be adjusted using scaling factors that account for 

these shielding effects. 

Flux varies according to orbital altitude, inclination, and solar activity.  At higher 

altitudes the proton population is negligible and cosmic ray sources dominate.  Radiation 

levels may increase by several orders of magnitude following extremely strong solar 

flares.  A worst-case GEO environment during an “anomalously large solar flare” could 

generate 7,740 SEUs per day in the Xilinx Virtex-II XQR2V6000 device [86].  Normal 

GEO conditions would be about 1/2000 this amount [17], or about 4 per day.  Estimates 

for a Virtex XQV1000 device in a 560 km LEO orbit range from 0.13 to 4.2 SEUs per 

hour depending on solar activity and geographic location [1]. 

Rough estimates of SEU rates are given in Figure 4.7, which highlights the 

preponderance of proton-induced SEUs within the lower Van Allen belt.  The data for 

Figure 4.7 was produced in the late-1980’s and estimates orbit-dependent SEU rates of 

between 10-6 and 5*10-5 upsets/bit/day [17].  Tiwari uses an experimentally-derived value 

of 48*10-6 upsets/bit/day [80] based on proton radiation tests on a Virtex XQVR300 

device.  Somewhat surprisingly, this number is within the range of values from [17] that 

were generated about 15 years earlier. 
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Figure 4.7 Typical Altitude Variation of SEU Rates for 60° Orbit (from [17]) 

 

Although actual SEU rates depend on the particular integrated circuit under study, 

estimates can be made using data from similar devices.  For example, Messenger 

suggests that if data is not available for the device under investigation, one can use proton 

susceptibility data from “part types that are alike or similar in … technology or … 

function.” [17] 

 

3. SEU Cross Section 
An important measure of SEU sensitivity is the cross section.  Cross section 

represents the theoretical area within which a transiting radiation particle with sufficient 

energy would cause an SEU.  Thus a large cross section is undesirable.  Cross section can 

be calculated for individual bits, for various resource classes as in [44], or for entire 

designs as in [6].  SEU cross sections can be derived experimentally using the following 

equation from [17]: 

 s]cmparticles/[events/s     lim 2÷⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Φ
=

∞→−

particle

SEU

tparticleSEU

Nσ  (4.15) 

Cross sections for various FPGA devices have been calculated and published 

extensively in the literature.  For example, experiments on the Virtex 300 devices showed 

a proton saturation cross section of 2.2*10-14 cm2 [88] and ion saturation cross section of 
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between 2*10-8 and 8*10-8 cm2 [44], [89] per configuration bit.  When discussing cross 

section values, it is important to understand the distinction between static and dynamic 

cross section.  As explained in [85], static cross section is measured without a clocking 

signal running and is therefore independent of the design instantiated on the FPGA 

device.  Dynamic cross section is measured with a clocking signal driving the particular 

design programmed onto the device and depends on how the design uses various FPGA 

resources.  Dynamic cross section can be calculated by multiplying the static cross 

section by the ratio of sensitive configuration bits to total configuration bits. 

 

4. Reliability and Mean Time Between Error 
MTBE, the reliability measurement needed for the total performance metric, can 

be estimated from cross section and SEU rate data.  Equation 4.16 shows that MTBE is 

simply the product of the SEU rate and the sensitive cross section fraction.  The SEU rate 

is determined by the orbit parameters and the physical behavior of the FPGA device.  It 

may be estimated directly from data such as that presented in Figure 4.7 or determined 

from the radiation flux and circuit dynamic cross section.  Since the dynamic cross 

section is design-dependent, it is the key parameter for comparing the reliability of 

different designs.  Depending on what data is available, one of the equivalent formulas 

below can be used. 
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It should be noted that configuration scrubbing is required to ensure that this 

equation is valid.  The preceding MTBE calculation assumes that the FPGA circuit is 

reconfigured soon after the onset of an error-producing SEU.  Configuration scrubbing is 

essential in FPGA design to prevent the accumulation of SEU-induced faults [85].  

Scrubbing can be scheduled periodically or can be performed in response to detected 

faults/errors [42], [85].  In either case, the scrub rate should be considerably faster than 

the SEU rate to minimize the possibility of multiple SEUs affecting the circuit 

simultaneously.  Nearly all current efforts in FPGA fault tolerance incorporate some form 

of configuration scrubbing [6], [8], [49], [80], [85]. 
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An additional class of failures that must be considered is known as Single Event 

Functional Interrupt (SEFI).  SEFI refers to SEU-induced faults that cause especially 

disruptive and persistent problems.  Often, SEFIs can only be corrected through complete 

power cycling of the device.  This special class of failures has been attributed to unique 

components within modern FPGAs.  For example, Graham [2] identifies three possible 

sources for SEFIs on Virtex devices: 1) JTAG controller, 2) power-on-reset state machine 

and 3) SelectMAP configuration pins.  SEFI events are much less common than normal 

SEUs since they can only be caused by a small number of bits on the device.  However, 

there are no mitigation methods for some SEFIs.  Thus the probability of SEFI 

occurrence sets an upper limit to the maximum achievable reliability of an FPGA design.  

One method of accounting for SEFI is to augment the regular configuration cross section 

value with an additional factor, as shown in the following equation [86].  The total SEFI 

cross section for Virtex devices is estimated at about 10-5 cm2 [2], [86]. 

 SEFISEUtotal σσσ +=  (4.17) 

 

5. Reliability Comparison Between RPR and TMR 
Ideally, the methodology developed above could be used to assess the 

effectiveness of Reduced Precision Redundancy (RPR) versus TMR in improving 

reliability for FPGA systems.  Unfortunately, such a comparison cannot be made in a 

general sense.  Since dynamic cross section is design-dependent, one must choose 

specific designs to analyze.  Chapter VI presents the analysis from several test designs.  

However, some general observations can be made about RPR versus TMR.  In addition, 

when analyzing RPR reliability it is crucial to account for instances when the circuit 

provides less precise, but nonetheless “correct” results.  This section discusses these 

general issues. 

TMR failure can occur only when 1) there are simultaneous faults in 2 or 3 of the 

redundant modules or 2) there is a fault in the voter circuit or related control/output logic.  

The reduced precision architecture is also sensitive to simultaneous faults in multiple 

modules and SEUs in the voter/control circuitry.  The main drawback of RPR is that 

precision is lost whenever an SEU causes an error in the exact solution.  When the exact 

result disagrees with the higher-confidence approximate results, the most probable 
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scenario is that a fault exists in the exact module.  Since the exact module is much larger, 

it is more likely that a random SEU occurred within the exact module than in another part 

of the circuit.  Therefore the voter should pass forward one of the lower precision results.  

In contrast, a TMR design can handle single errors in any computation module without 

loss of precision. 

Although the more extensive redundancy of TMR might seem more reliable than 

the reduced precision approach, there are some subtleties worth investigating.  For 

example, assume a circuit for which the exact solution occupies 1/3 of the FPGA, and 

voter circuitry that is negligible in size.  This second assumption will not always be valid 

but simplifies the following discussion.  Compare this to an RPR design that uses an 

exact module occupying 1/3 of the chip area, two approximate modules that each occupy 

1/30 of the chip, and a voter that is negligible.  Figure 4.8 depicts the hypothetical FPGA 

layouts for these designs.  The most obvious difference is that the RPR design occupies 

much less chip area, making it less susceptible to permanent device failures affecting 

small localized regions.  Another advantage of RPR is that the small approximate 

modules can be enhanced with additional redundant modules and distributed voting units 

to minimize the unmitigated cross section. 

 

 
Figure 4.8 Hypothetical TMR circuit (left) and RPR circuit (right) 
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At low SEU rates, spatial redundancy with configuration scrubbing can allow a 

system to continue functioning while faults are corrected in the background.  At higher 

SEU rates the accumulation of errors can occur faster than they can be corrected.  The 

TMR design in Figure 4.8 is protected against most single faults.  The only single fault 

susceptibility is in the voter/control/output logic.  To protect against multiple faults, the 

configuration scrub cycle (the time for a fault to be detected and corrected) must be less 

than the time it takes for 2 modules to suffer SEUs.  Though improbable, it is not 

impossible for successive faults to occur within a relatively short scrub cycle.  Following 

a first-fault event, roughly 2/3 of the chip is vulnerable to successive faults until the 

configuration scrub corrects it. 

In contrast, the RPR design is less vulnerable to consecutive SEUs for two 

reasons.  First, it requires much less time to scrub the approximate modules, so an error in 

that level can be corrected quickly before another SEU hits.  Second, since it occupies 

less physical area it has a smaller sensitive area (i.e., a smaller SEU cross section) and is 

therefore unaffected by SEUs occurring over much of the chip.  In this hypothetical 

design, about half of the FPGA is unused (or used for other purposes) so roughly half of 

all SEUs will not affect the computation.  Of the SEUs that occur in the functional circuit, 

about 90% will occur in the precise module.  For the few SEUs that occur in the 

approximate modules, an intelligent voter and redundancy within/between approximate 

modules protect against data or configuration errors. 

Finally, the reliability factor must account for the less precise outputs produced by 

the RPR configuration.  Though the reduced precision values provide less “benefit” than 

full precision results, they nonetheless prevent the system from experiencing a failure as 

it would if it received incorrect data.  An intermediate “benefit” value should be 

attributed to these less precise solutions.  Though the probability of error with TMR 

might be very low, such errors often deviate greatly from the correct result.  Building 

upon the cost/benefit concepts presented earlier in this chapter, one might assign TMR 

answers a value of Bmax when correct or 0 when incorrect.  However, with RPR it is 

reasonable to define three benefit levels {0, Bmid, Bmax}.  The reliability score can then be 

scaled according to the anticipated frequency of precise, imprecise, and incorrect 

solutions: 
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idmimprecisemaxcorrectRPRyreliabilit

maxcorrectTMRyreliabilit

BpBpB
BpB

⋅+⋅=

⋅=

−

−
 (4.18) 

As an example, consider a TMR system that provides correct answers 95% of the time, 

and an RPR system with 8% imprecise and 2% failure probabilities.  Assuming a Bmax 

value of 1 and Bmid value of ½, the reliability score for TMR is 0.95 compared to 0.94 for 

RPR.  Thus in this example TMR has a higher reliability score, but only by a small 

amount. 

These simple models do not address the possibility of failure due to the 

cumulative effect of multiple successive imprecise results.  For example, the hypothetical 

satellite control system from earlier may be robust enough to accept imprecise solutions 

1% of the time if they are distributed over time, but may drift outside a safe tolerance 

range if many occur in rapid succession.  Accounting for this effect would add 

considerable complexity to the analysis.  Since SEUs occur relatively infrequently and 

configuration scrubbing is used in nearly all designs, most situations do not require this 

extra complication. 

 

E. SUMMARY 
This chapter introduced a formal method for comparing the overall value of 

competing design solutions using a Total Performance Metric (TPM).  By considering all 

relevant performance factors simultaneously, the TPM helps engineers objectively select 

the most advantageous designs.  Compared to conventional system development 

processes that often rely on subjective evaluations, this quantitative method ensures fair 

and consistent decisions.  Applying the TPM approach to real-world problems can reveal 

interesting trade-offs.  For example, RPR designs that provide lower reliability and/or 

precision than TMR may be more beneficial overall if they offer significant advantages in 

power, speed, etc. 

The following chapters illustrate the potential benefits of RPR by quantifying 

several TPM parameters for a test circuit based on the CORDIC algorithm.  Chapter V 

describes the CORDIC algorithm and explains why it was chosen as the test case in this 

research.  Chapters VI and VII show that, although TMR has better overall reliability, 
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RPR is effective for improving reliability of the most significant bits in the circuit’s 

output data.  Chapter VI also demonstrates that RPR requires much less circuit area and 

power than TMR designs with identical latency and throughput performance.  This data 

can be combined with the parameter scaling factors K to determine optimal design 

solutions to real-world problems, as described in the satellite image processing example 

earlier in this chapter. 
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V. CORDIC ALGORITHM 

A. OVERVIEW 
The CORDIC algorithm was chosen as a test case for exploring the effectiveness 

of the fault-tolerant and power-saving concepts from Chapters II and III.  In order to 

investigate these issues in a realistic scenario, a CORDIC-based sine/cosine calculator 

was constructed for Xilinx Virtex FPGAs.  Several designs were created that 

implemented both iterative and pipelined versions with varying precision.  The details of 

these implementations are provided in Appendix A.  These designs incorporated fault-

tolerant features to make them reliable and suitable for spacecraft computer systems.  As 

discussed in Chapter II, the most common fault-tolerant methods for FPGAs employ 

spatial redundancy.  TMR and RPR designs using the basic CORDIC processor were 

built for the CFTP system to be launched into low-earth orbit in late 2006.  The designs 

were then tested in the lab for SEU fault tolerance and power consumption.  They were 

also made flexible to permit exploration of the trade space between fault tolerance, power 

usage, and other performance parameters described in Chapter IV.  For example, the 

precision of the upper/lower bound calculations in RPR designs can be varied easily.  

Changing the precision of these error bounds affects area, power, precision and 

reliability.  Therefore, many design options can be examined using the same basic 

algorithm and architecture.  This chapter describes the CORDIC algorithm and why it is 

useful for investigating trade-offs between TMR and RPR fault-tolerant approaches. 

 

1. Rationale for Choosing CORDIC 
CORDIC is a good test case for numerous reasons.  It is a well-known algorithm 

founded on basic mathematical principles and widely used in a variety of applications.  A 

self-contained CORDIC module can be used in a stand-alone configuration or as a 

coprocessor for larger systems such as satellite control computers.  The algorithm can be 

readily implemented on FPGAs [25], [34], [90].  Since most implementations include a 

mixture of combinational and sequential logic, it is representative of general complex 

circuits.  Thus, faults in a CORDIC design can be manifested in more complicated ways 

than faults in a trivial circuit.  In addition, CORDIC circuits can be built as either iterative 
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or pipelined designs of varying wordlength in order to balance criteria such as 

throughput, size, and accuracy.  Such designs can be easily scaled to occupy the desired 

fraction of an FPGA to effectively investigate power usage and fault tolerance. 

A CORDIC processor better reflects the kinds of circuits used in real-world 

systems because it has more complicated input/output relationships than simpler circuits, 

such as the small binary counters used in [29].  The feedback inherent in the iterative 

CORDIC method presents interesting error propagation behavior not observed in simple 

circuits.  The iterative design can be viewed as a fairly complex finite state machine, 

raising questions about when and where results should be checked for correctness (e.g., at 

every iteration or only at the final result?).  Though relatively complex, a CORDIC 

design is more manageable in terms of size and complexity than extremely complicated 

circuits such microprocessors, and can be easily scaled to meet the requirements of a 

wide range of applications. 

Another important characteristic of the CORDIC algorithm is that it fits the 

criteria of Class A given in Chapter II.  Step 2 in the flowchart from Figure 2.12 asks 

whether the system can occasionally accept lower precision results.  The answer is 

affirmative for many CORDIC applications that can accept “flexible precision,” such as 

signal processing and control systems.  CORDIC also meets the criteria of steps 3 and 4 

in the flowchart, which ask whether approximate solutions can be formulated and are 

more efficient.  By changing the wordlength and/or number of iterations in a CORDIC 

processor, the precision of the solutions can be adjusted.  A less precise processor will 

necessarily be smaller and therefore more efficient in terms of area, time and power.  

Thus, CORDIC is a good candidate for the RPR fault-tolerant technique. 

 

2. CORDIC Applications 
Although the original use of CORDIC was in airborne navigation [91], the 

CORDIC technique can calculate numerous functions for a broad range of applications.  

It can be used to calculate transcendental functions (sine, cosine, arctangent, exponential, 

etc.), coordinate transformations (Cartesian-to-polar, etc.), and other common arithmetic  
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functions (multiplication, division, square root, etc.) [30].  CORDIC processors have 

been used for applications as varied as handheld calculators, radar signal processing, and 

image processing [90]. 

CORDIC has been used in many DSP applications, such as discrete Fourier 

transforms and matrix solvers [25].  It has also been used to calculate the Discrete Cosine 

Transform (DCT), which is widely used for image compression and other signal 

processing tasks.  Numerous papers describe efficient CORDIC-based DCT techniques 

[92], [93]. 

One particularly intriguing paper investigates low-power image processing using 

a CORDIC vector interpolator [65]. The authors achieve over 70% reduction in power 

consumption by adjusting the precision of the calculations to match the dynamically 

changing scene.  This variable precision calculation is enabled by controlling the number 

of CORDIC iterations performed – higher precision uses more iterations and more power, 

while lower precision requires less power. 

CORDIC has proven to be an efficient and powerful computing technique for 

VLSI designs and, more recently, FPGA implementations [25], [94].  In fact, CORDIC is 

so widely used that it is now available as intellectual property (IP) “cores” from Xilinx 

[95] and other vendors.  Thus, studying CORDIC designs has considerable practical 

utility. 

 

B. MATHEMATICAL FOUNDATION 
The CORDIC computational technique is an elegant method for calculating a 

surprising number of functions using simple circuit elements.  Volder developed this 

method to calculate navigation equations in a real-time aircraft computer system [91].  He 

named his system the COordinate Rotation DIgital Computer (CORDIC) and first 

published the technique in 1959.  Its basic formulation is an iterative algorithm based on 

simple trigonometric relationships that describe vector rotation in 2-dimensions.  It was 

later generalized to include 6 possible modes of operation {circular rotation/vectoring, 

linear rotation/vectoring, hyperbolic rotation/vectoring} that enable the calculation of 

numerous standard and transcendental functions [90].  One of the more commonly used 

modes is the circular rotation mode, which is derived in the next section. 
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1. Derivation of Circular Rotation Mode 
The basic concept for the circular rotation mode can best be described using 

Figure 5.1.  A unit length vector originally aligned along the x-axis is rotated by an angle 

θ.  Since the vector length remains equal to 1 through this rotation, the final x and y 

values give the cosine and sine values of the angle θ. 

 

 
Figure 5.1 Vector Rotation in 2 Dimensions 

 

In the CORDIC algorithm, this rotation process is performed as a series of pre-

defined rotation steps of decreasing magnitude that add up to the total desired rotation 

angle.  These rotation steps are chosen to be αi=±{45°, 26.6°, 14.0°, 7.1°, …} according 

to the formula αi=±atan(2-i), as discussed in the next section.  For example, 10° of 

rotation can be approximated in four steps as θ = 45 – 26.6 – 14 + 7.1 = 11.5°.  Any angle 

can be approximated to the desired precision using the appropriate number of steps. 

However, if this “true” rotation is followed, computing the x and y values at each 

step requires sine and cosine calculations.  Therefore Volder devised the concept of a 

pseudorotation, in which the rotated vector is extended to meet a line perpendicular to the 

original vector.  A pseudorotation spans the same angle as a true rotation, but causes the 

vector length to increase.  Figure 5.2 shows the geometry of these two methods for 

rotating the vector (x1,y1) by α. 

 

x0=1, y0=0 

y=sin(θ) 

x=cos(θ) 

θ 
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Figure 5.2 True Rotation (left) versus Pseudorotation (right) 

 

For a vector of length R, the original vector components are given by: 
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while the rotated vector components in true rotation are given by: 

 
( )
( ) [True]     

cossinsin'
sincoscos'

112

112

ααβα
ααβα

yxRy
yxRx

+=+=
−=+=

 (5.2) 

and the vector in pseudorotation is given by: 
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These equations form the basis for the CORDIC algorithm.  At each step, i, the 

vector is rotated by a pseudorotation angle αi, as shown in the following equations.  The 

variable λ tracks the remaining amount of angular rotation. 
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Unlike true vector rotations, the CORDIC process does not preserve the length of 

the original vector.  Each pseudorotation lengthens the vector by the factor α2tan1+  

in Equation 5.3 above.  This lengthening is independent of whether the rotation α is 

positive or negative.  The total vector lengthening is a constant, K, that depends only on 

the number of iterations performed.  With the standard angular steps of ±atan(2-i) 

described in the next section, for 10 or more iterations K is roughly 1.646760.  Since the 

vector expansion factor can be determined a priori, one can compensate by appropriately 

scaling the original vector (X0, Y0). 

 

2. Selection of Pseudorotation Angles 

For ease of implementation in a digital system, the values of tan(α) are restricted 

to powers of two (20, 2-1, 2-2, …).  This simplification allows the multiplications that 

appear in Equation 5.4 above to be treated as simple right shifts of the binary numbers.  

Therefore, the increments by which λ can change are restricted to the values ±atan(2-i). 

 

i =  0 1 2 3 4 5 6 … 

αi (deg) = 45 26.6 14.0 7.1 3.6 1.8 0.9 … 

αi (rad) = 0.785 0.464 0.245 0.124 0.062 0.031 0.016 … 

 
Table 5.1 Pseudorotation Angles for Circular CORDIC Modes 

 

Finally, an additional term is needed to determine whether the rotation increment 

at each step should be positive (counter-clockwise) or negative (clockwise).  The variable 

ξi ∈ {1, -1} tracks these rotation directions to ensure the vector approaches the desired 

final angle.  The fundamental CORDIC equations are therefore: 
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These are the forms of the equations needed for implementation in a digital 

system.  The essential hardware elements are 3 registers, 3 add/subtract units, 2 shifters, a 

sign detector, and a lookup table.  Figure 5.3 shows how these components are arranged 

in an iterative implementation.  Details such as register reset signals, LUT address lines, 

output rounding and other input/output processing are not shown. 

 

 
Figure 5.3 Iterative CORDIC Hardware Configuration 

 

Depending on which sign formula is used for ξ, different functions can be 

calculated.  Choosing the first formula (rotation mode) and setting (X0=1/K, Y0=0) 

produces cosine and sine functions.  After m iterations, the values Xm and Ym represent 

approximations of the cosine and sine of the starting angle λ0.  With the second formula 

(vectoring mode) and λ0=0 the function atan(Y0/X0) is produced. 

 

C. ERROR PROPAGATION IN ITERATIVE AND PIPELINED DESIGNS 
Although a CORDIC processor is comprised of simple circuit elements, the 

iterative nature of its calculations causes errors to propagate in complicated ways.  This 

complex behavior can cause single bit errors in the input or internal circuit to cascade 

into multiple data bit errors at the output.  This cascade of errors can happen in both 

iterative and pipelined implementations.  Thus, standard error detection and correction 

schemes are insufficient for coping with faults in CORDIC designs and other circuits 

with similar iterative structures. 
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1. Feedback and Error Propagation 

An iterative CORDIC circuit has quite obvious feedback paths, since the (X, Y, λ) 

register values on one clock cycle are used to calculate the same register values on the 

next clock cycle.  Depending on when and where a fault occurs, it can corrupt a large 

fraction of the output data bits.  In addition, the control function is a finite state machine 

that makes decisions about when to start/stop the iterations and keeps track of the 

iteration number.  While some failures in this controller have mild consequences, other 

failures can be catastrophic. 

By contrast, a pipelined CORDIC design does not contain such feedback 

elements.  The pipeline is entirely made up of feed-through logic.  There is no need to 

keep track of iteration counts since the lookup table values can be distributed along the 

pipeline and the shifting function can be hardwired.  Nonetheless, some faults can still 

lead to multiple bit errors at the output.  For example, SEU-induced configuration faults 

in the early pipeline stages have a greater numerical impact on the result (affecting bits 

closer to the MSB) than faults in later pipeline stages (affecting bits closer to the LSB). 

Two brief examples demonstrate typical error propagation behavior.  Both cases 

produce outputs with 8-bit resolution using the two’s complement fixed-point number 

scheme from Appendix A (Appendix B contains the MATLAB code that was used for 

generating these examples).  Eight iterations and an 11-bit internal datapath are needed to 

provide accurate 8-bit output values.  Appropriate rounding, not shown in this section, 

must be applied to the final X and Y values between the internal registers and the output 

lines.  These examples use the circular rotation mode to produce sine and cosine values of 

the input angle of 30° (0.5236 radians).  Thus the correct answers should be 

866.023)30cos( ==°=X  and 500.021)30sin( ==°=Y . 

Table 5.2 shows what happens when an SEU upsets bit #4 of the Y register during 

iteration #6 in an iterative design.  As expected, the final Y value is significantly 

corrupted, whereas the final X value is changed only slightly.  However both answers 

have 2 bits in error.  Note that the angle values are unaffected, as the λ datapath has no 

dependence on the X and Y values for this CORDIC mode. 
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 i Fault-free Faulty 
0 00100110111 = 0.607 00100110111 = 0.607 
1 00100110111  00100110111  
2 00111010010  00111010010  
3 00110101011  00110101011  
4 00111001101  00111001101  
5 00111000000  00111000000  
6 00110111001  00110111101  
7 00110111101  00110111111  

X 

8 00110111100 = 0.867 00110111111 = 0.873 
0 00000000000 = 0.000 00000000000 = 0.000 
1 00100110111  00100110111  
2 00010011100  00010011100  
3 00100010000  00100010000  
4 00011011011  00011011011  
5 00011110111  00001110111  
6 00100000101  00010000101  
7 00011111111  00001111111  

Y 

8 00100000010 = 0.504 00010000010 = 0.254 
0 00100001100 = 0.527 00100001100 = 0.527 
1 11101111010  11101111010  
2 00001100111  00001100111  
3 11111101010  11111101010  
4 00000101010  00000101010  
5 00000001010  00000001010  
6 11111111010  11111111010  
7 00000000010  00000000010  

λ 

8 11111111110 = -0.004 11111111110 = -0.004 
 

Table 5.2 Example Error Propagation in Iterative CORDIC 
 

The second scenario involves an SEU causing a configuration fault in the carry 

logic for the third stage adder along the λ datapath of a pipelined design.  This 

hypothetical fault causes an inversion of the carry signal from bit position 6.  As seen in 

the fourth λ row of Table 5.3, the carry propagation error has a ripple effect on the 5 

leftmost bits.  Because the X and Y calculations depend on the sign of the angle value, 

this fault causes significant data corruption in both the sine and cosine results.  The final 

X and Y values each contain 3 bit errors.  Interestingly, the angle value error is corrected 

in subsequent stages and by the fifth stage recovers completely to the fault-free value.  

However, this correction of the angle value only occurs in the rotation modes.  In the 

vectoring modes, an error in the λ register would persist since the iterations are designed 

to drive the Y value to zero. 

 

Fault 
occurs 
here
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 Stage Fault-free Faulty 
0 00100110111 = 0.607 00100110111 = 0.607 
1 00100110111  00100110111  
2 00111010010  00111010010  
3 00110101011  00110101011  
4 00111001101  00110001001  
5 00111000000  00110011101  
6 00110111001  00110010100  
7 00110111101  00110011000  

X 

8 00110111100 = 0.867 00110010110 = 0.793 
0 00000000000 = 0.000 00000000000 = 0.000 
1 00100110111  00100110111  
2 00010011100  00010011100  
3 00100010000  00100010000  
4 00011011011  00101000101  
5 00011110111  00100101101  
6 00100000101  00100111001  
7 00011111111  00100110011  

Y 

8 00100000010 = 0.504 00100110110 = 0.605 
0 00100001100 = 0.527 00100001100 = 0.527 
1 11101111010  11101111010  
2 00001100111  00001100111  
3 11111101010  00000101010  
4 00000101010  11111101010  
5 00000001010  00000001010  
6 11111111010  11111111010  
7 00000000010  00000000010  

λ 

8 11111111110 = -0.004 11111111110 = -0.004
 

Table 5.3 Example Error Propagation in Pipelined CORDIC 
 

The significance of these observations is that modular redundancy techniques 

such as TMR and RPR are essential for protecting against faults in FPGA 

implementations of CORDIC.  Error detection and correction (EDAC) codes, such as 

Hamming and Reed-Solomon codes, are effective for fixing a small percentage of bit 

flips during data transmission or storage, but are incapable of correcting large numbers of 

bit errors that can occur due to functional faults [30].  EDAC methods generally operate 

by checking input/output data against a “dictionary” of valid codewords, focusing on 

faults that affect the data bits themselves instead of faults in the underlying operation of 

the circuit.  Some coding techniques, such as residue coding, provide tolerance against 

functional faults within circuits such as simple adders [96].  However, the properties of 

residue codes are only preserved in addition, subtraction and multiplication [97] so 

residue coding is not suitable for the division operations inherent in the CORDIC 

Fault 
occurs 
here 
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iterations.  Techniques such as TMR and RPR overcome these limitations and are more 

effective for protecting complex circuits such as CORDIC. 

 

2. Using TMR and RPR to Correct CORDIC Faults 
The effectiveness of TMR and RPR can be demonstrated using the preceding 

examples from Table 5.2 and Table 5.3.  The TMR approach uses three identical copies 

of the processing module, whereas RPR uses one copy of the processing module and two 

smaller modules for calculating the upper and lower bounds.  Figure 5.4 shows a block 

diagram of how RPR would be implemented.  In these examples, the input and output 

datawidth for the exact module is 8-bits (n=8, h=8), though the internal datapath is 11-

bits wide.  For these examples, assume that 5-bit calculations of upper and lower bounds 

are sufficient (m=5, k=5). 

 

 
Figure 5.4 General RPR Configuration 

 

With these assumptions, the behavior of both TMR and RPR designs can be 

predicted.  Considering only a single fault that affects one of the identical TMR modules 

or the exact module in RPR, the voters in both designs are presented with the choices 

given in Table 5.4 and Table 5.5 for the two fault scenarios described in the previous 

section.  Note that the full-precision values from Table 5.2 and Table 5.3 have been 

rounded to 8 bits , as mentioned in Section 1. 
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TMR RPR 
X 00111000 X 00111 
Y 00100000 Y 00101 Module A 

(fault-free) λ 00000000 

Module A 
“upper” 

(fault-free) λ 00000 

X 00111000 X 00111000 
Y 00010000 Y 00010000 Module B 

(faulty) λ 00000000 

Module B 
“exact” 
(faulty) λ 00000000 

X 00111000 X 00110 
Y 00100000 Y 00100 Module C 

(fault-free) λ 00000000 

Module C 
“lower” 

(fault-free) λ 11111 

X 00111000 X 00111000 
Y 00100000 Y 00100--- Voter 
λ 00000000 

Voter 
λ 00000000 

 
Table 5.4 Example Response of Iterative TMR and RPR Designs 

 

As expected, in both scenarios the TMR version produces the correct answer with 

full precision since it has access to two fault-free answers.  RPR is more complicated 

because its fault response depends upon how far the exact solution deviates from the 

correct value.  In the iterative case above, the rounded value of the X result is the same 

for the faulty and fault-free modules, thus neither voter sees any conflict.  However, the Y 

result error is detected by the voters.  The RPR voter recognizes that the faulty Y value is 

outside the range of the upper/lower bounds and must make a decision about what value 

to report.  As shown in the table, the voter reports 00100---, with “-“ indicating that these 

digits may differ depending on the particular implementation.  For example, a logical 

choice might be to provide a “midpoint” value like that suggested in Figure 5.4.  Thus 

00100--- would become 00100100. 

In the pipelined case below, the data errors exist in the least significant bits of the 

X and Y values.  Because this particular circuit fault yields only small numerical errors, 

the X, Y, and λ values from the exact module all fall within the bounds of RPR modules 

A and C.  Therefore the voter doesn’t detect any problem and passes along the results 

from module B.  As indicated in the table, this permits three erroneous bits to propagate.  

However, all of the results are within the tolerance range of a 5-bit RPR design (±2-(5-2)= 

±0.125).  This possibility of imprecise results is the trade-off that permits savings in area 

and power when implementing RPR fault tolerance. 
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TMR RPR 
X 00111000 X 00111 
Y 00100000 Y 00101 Module A 

(fault-free) λ 00000000 

Module A 
“upper” 

(fault-free) λ 00000 

X 00110011 X 00110011 
Y 00100111 Y 00100111 Module B 

(faulty) λ 00000000 

Module B 
“exact” 
(faulty) λ 00000000 

X 00111000 X 00110 
Y 00100000 Y 00100 Module C 

(fault-free) λ 00000000 

Module C 
“lower” 

(fault-free) λ 11111 

X 00111000 X 00110011 
Y 00100000 Y 00100111 Voter 
λ 00000000 

Voter 
λ 00000000 

 
Table 5.5 Example Response of Pipelined TMR and RPR Designs 

 

It is important to point out that neither redundancy technique is infallible.  TMR 

and RPR are vulnerable to faults that affect any single point of failure, such as non-

replicated voter components and SEFI-type vulnerabilities unique to FPGAs.  In addition, 

they are both vulnerable to multiple faults that simultaneously affect more than one 

module.  However, when using FPGA configuration scrubbing, the likelihood of 

experiencing SEU-induced faults in multiple modules at the same time is extremely rare. 

Chapters VI and VII demonstrate the effectiveness of these two redundancy 

approaches for various CORDIC implementations.  Of particular interest are the relative 

effectiveness and efficiency of these two techniques.  By quantifying the SEU 

susceptibility and area/power usage of RPR and TMR, one can make informed decisions 

about which method is most appropriate for a particular real-world problem. 
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VI. SIMULATION ENVIRONMENT AND RESULTS 

A. OVERVIEW 
In order to demonstrate the effectiveness and efficiency of the RPR fault tolerance 

approach, simulations were conducted to determine the SEU sensitivity and power 

consumption of several CORDIC designs implemented on FPGAs.  SEU simulations 

were performed using hardware and software tools developed at NPS for the CFTP 

program, and enhanced to support this research.  The completion of this SEU simulation 

system is a major contribution of this work, as it allows comprehensive ground-based 

testing for emulating and predicting performance of the CFTP experiments in their 

operational space environment.  The SEU simulator was validated using radiation test 

data from experiments conducted at UC Davis’ Crocker Nuclear Lab (see Chapter VII).  

Power estimates for the CORDIC designs were made using commercial software tools, 

following the methodology used at BYU [9].  Predictions of power consumption were 

made by integrating high-fidelity timing simulations of the circuits with manufacturer 

data of FPGA circuit parameters. 

The data presented in this chapter supports the assumptions made in previous 

chapters regarding the benefits of an RPR fault-tolerant design.  Compared to the TMR 

designs tested in this research, the RPR designs show comparable SEU tolerance but 

require significantly less power.  Thus for many applications, especially those in which 

power is a significant constraint, the RPR architecture is superior to the typical TMR 

approach. 

 

B. SEU SIMULATIONS 

1. SEU Simulation Environment 
As part of the CFTP research program, a fault injection system was built at NPS 

to simulate the effects of SEUs on FPGA circuits [98].  The initial fault injection system 

consisted of manual command-line and graphical user interface methods of forcing 

single-bit upsets into an operational FPGA configuration bitstream.  The command-line 

method was used to simulate upsets to specific bits and/or regions on the device.  The 
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graphical interface injected faults in a more random manner, but provided visual 

confirmation of whether or not those faults appeared in regions of the FPGA occupied by 

the functional circuit.  The effects of the simulated SEUs were determined using 

automatic error detection circuits programmed on the FPGAs, by visual monitoring of the 

output data stream, and through post-processing of the data.  These manual techniques 

were used in preparation for radiation testing and in analysis of the radiation test results. 

As part of this research, the manual methods were later augmented with an 

automatic fault injection system that dramatically improved the speed and capability of 

the SEU simulator.  The CFTP hardware configuration is well-suited for this task because 

it includes two Xilinx Virtex FPGAs and an on-board Flash memory device for holding 

configuration bitstream data.  Figure 6.1 shows the major components in the SEU 

simulator configuration.  The first FPGA serves as the controlling device and the second 

FPGA is the experiment device. 

 
Figure 6.1 SEU Simulator Configuration with CFTP Hardware 

 

The automated SEU simulator tests the SEU sensitivity of the circuit design 

loaded onto the experiment FPGA.  The control FPGA reads fault-free configuration data 

from the Flash memory, programs the experiment FPGA with artificially corrupted 

bitstream data, and reports the effect of each simulated SEU on the experiment FPGA 

output data.  Since some configuration faults only manifest themselves as data errors for 

certain input values, it is important for the X2 circuit to process input vectors that 

exercise as many circuit paths as possible.  The normal simulator settings allow the X2 

circuit to run for approximately 1 msec after each bit is toggled to capture these data-

dependent sensitivities.  The CFTP board has a 50 MHz clock, but throughput is lower.  

For example, the 32-bit iterative CORDIC circuits described below divide the clock 

down to 6.25 MHz and require 37 cycles to produce each result.  Thus, these circuits 
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process 168 unique inputs in a 1 msec period.  In addition, pseudo-random number 

generators are used to produce input vectors for the X2 circuit to maximize the chance of 

discovering error-producing configuration faults.  Data is collected by the ARM 

processor (also part of the CFTP flight hardware) and sent to the LINUX workstation for 

storage and analysis. 

Automation is essential for enabling the comprehensive measurement of SEU 

sensitivity for complex FPGA circuits in which millions of configuration bits must be 

individually tested.  Even with the automation of the fault injection process, 

comprehensive SEU simulations are a time-consuming endeavor.  In normal operation, 

the SEU simulator takes over one hour to exhaustively test all 3.3 million configuration 

bits on the Virtex XQVR600 device.  Designs with very small sensitivities have few 

errors to report and the total process finishes in slightly over 1 hour.  Designs with greater 

SEU sensitivity take longer to run because the error reports slow the process.  For 

example, a design with about 40,000 sensitive bits requires nearly 1.75 hours to 

complete. 

Although the manual fault injection methods are not practical for comprehensive 

SEU sensitivity studies, they were invaluable in developing and verifying the automated 

fault injection process.  The initial fault injection methods were used for rapid 

confirmation of radiation results.  Data from these manual simulations and radiation tests 

were compared with results from the automated simulator, thus demonstrating the 

validity of the automatic method of simulating radiation-induced SEUs.  During radiation 

testing the proton flux was controlled to ensure that the exact bits causing data errors 

could be easily isolated.  These configuration bits were then manipulated in the simulator 

to verify that they were responsible for the data errors observed in the radiation 

environment.  Chapter VII discusses the details of the radiation testing and presents 

results from the verification effort.  Once validated, the SEU simulator can be used 

confidently to examine the sensitivity of FPGA circuits without expensive and time-

consuming testing in a radiation facility.  The following sections demonstrate the 

effectiveness of the RPR method through simulations of various CORDIC test circuits. 
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2. Test Circuits 

Several CORDIC circuits were tested to draw fair and accurate conclusions about 

the comparative reliability of TMR and RPR approaches.  The basic CORDIC design is 

detailed in Appendix A.  However, some important details differ between the various test 

designs shown below.  The first two test circuits, labeled “Davis TMR” and “Davis 

RPR,” correspond to the exact circuits used during radiation testing.  Several 

improvements implemented after the UC Davis test runs in Nov 2005 included: 1) 

replicating the input vector counters and assigning each TMR or RPR module its own 

counter, 2) using LFSRs for input number generators, and 3) simplifying the TMR voter 

logic to operate as a bit-wise voter rather than vector-wise.  Changing the input vector 

counters from simple binary counters to LFSR pseudo-random number generators 

provided better coverage of the input vector space.  This is because practical issues (in 

particular, the time required to test a circuit) limit the number of inputs that can run 

through the circuit for each simulated SEU.  The LFSR approach offers a better sampling 

of the range of possible input values. 

Finally, it is important to note that the TMR designs built for these tests differ 

somewhat from the TMR style suggested by Xilinx [68].  Instead they follow more 

closely with the TMR designs tested in [85].  Whereas Xilinx’s approach involves 

triplication of logic functions as well as all clock signals and input/output pins, the TMR 

circuits tested here do not replicate the clock and I/O signals.  Rather, a single set of 

inputs are shared among all modules and all data results are voted within the FPGA 

before being output.  The following sections describe the unique features of each test 

circuit.  Different and more extensive TMR, RPR and other techniques can easily be 

inserted in the simulation testbed developed here to support future research. 
 

a. “Davis TMR” Iterative CORDIC 
Figure 6.2 shows the layout for the TMR circuit used during radiation 

testing at UC Davis (note that the cloud shapes reflect the fact that the component 

placement was not specified as a design constraint and instead the Xilinx tools were 

allowed to automatically place and route the circuit).  It consists of three copies of an 

iterative CORDIC processor computing the sine and cosine functions, as detailed in 
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Appendix A.  Inputs and outputs are 32 bits wide, while internal computations are 

performed with 39-bit precision.  A single binary counter is included to generate 32-bit 

input angle values for all three modules.  Although three different results are computed in 

each module (sine, cosine, and residual angle), due to I/O pin limitations only the sine 

value is compared and output from the FPGA.  The only input to the FPGA is a reset 

signal that is used to synchronize the X1 and X2 devices by initializing all registers, 

including the angle input counter.  Outputs from the device consist of the voted 32-bit 

sine value and an error flag indicating whether the TMR voter detected any mismatch 

among the three modules. 

 

 
Figure 6.2 Layout for “Davis TMR” Circuit 

 

b. “Davis RPR” Iterative CORDIC 
The RPR circuit used during radiation testing is sketched in Figure 6.3.  It 

consists of a single copy of the 32-bit iterative CORDIC processor used in the “Davis 

TMR” design, as well as 8-bit upper and lower bounds calculations that are implemented 

as simple look-up tables.  These upper/lower bounds provide protection against faults that 

cause the full-precision module to produce grossly inaccurate results, as is the intent with 

the RPR approach.  A single binary counter feeds input vectors to all three modules and a 

reset signal synchronizes the FPGAs.  Like the TMR circuit, only the sine results are 

compared and output.  Also, an error flag tells when the voter detects a result from the 

precise module that falls outside the range of the upper/lower bounds. 
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Figure 6.3 Layout for “Davis RPR” Circuit 

 

c. “Unprotected” Iterative CORDIC 
In addition to the TMR and RPR designs, circuits without any fault 

tolerant features were tested.  The basic configuration for these circuits is shown in 

Figure 6.4.  The first of these circuits was a 32-bit iterative CORDIC processor based on 

the VHDL design given in Appendix A.  The input and output behavior of this circuit is 

identical to the Davis circuits in a fault-free situation.  An additional unprotected circuit 

with only 16-bits of computational precision was tested to understand the correlation 

between circuit size and SEU sensitivity.  These circuits have no way of mitigating SEUs 

that corrupt their configuration bits.  Testing an unprotected circuit is useful for 

determining a baseline failure rate, which can then be compared with fault tolerant design 

options.  The benefit of the fault tolerant approaches can be assessed relative to the 

reliability of the unprotected design. 
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Figure 6.4 Layout for “Unprotected” Circuits 

 

d. “Improved TMR” Iterative CORDIC 
Following the radiation testing at UC Davis, some deficiencies were 

identified in the overall structure of the TMR and RPR designs.  Therefore several 

improvements were made to the original designs.  As explained in Appendix A, while the 

original “Davis” circuits were generated mostly with schematic design tools, subsequent 

circuits were created using VHDL.  This permitted more rapid adjustment of numerical 

precision, voter design, and other parameters.  TMR versions of the iterative CORDIC 

circuits were tested with various degrees of precision.  As shown in Figure 6.5, the 

improved TMR circuits include separate input number generators for each CORDIC 

module in order to eliminate the input counter as a single point of failure.  In addition, 

LFSRs are used instead of simple binary counters to improve the randomness of the 

circuit input values.  Finally, the TMR voter was changed so that it operates on each 

output bit individually instead of the entire output data word.  Voting each bit separately 

is more common in TMR designs.  Also note that the rectangular shapes reflect the 

explicit circuit placement constraints that were used to ensure that faults in a certain 

region of the device did not affect more than one module. 
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Figure 6.5 Layout for “Improved TMR” Circuits 

 

e. “Improved RPR” Iterative CORDIC 
Following the same rationale described for the “improved TMR” designs, 

some improvements were made to the original RPR designs tested at UC Davis.  The 

“improved RPR” designs were created in VHDL, include replicated LFSR input number 

generators, and have enhanced voter layout.  These circuits maintain the basic RPR 

architecture of computing a full precision solution and lower precision upper and lower 

bounds, as shown in Figure 6.6.  One key enhancement to the voter is a checker that 

detects errors in the numerical difference between the lower and upper bounds.  This 

checker ensures that the upper bound is not less than or equal to the lower bound.  In 

addition, the checker confirms that the difference between the upper and lower bounds is 

less than or equal to the maximum allowed.  Based on the rounding methods used here, 

this difference should be no more than one digit in the least significant bit in the bounds 

calculations. 
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Figure 6.6 Layout for “Improved RPR” Circuits 

 

3. Results 

a. Data 

The fundamental product of the SEU simulator is the number of 

configuration bits in a circuit design that cause errors in output data.  These bits are 

referred to as “sensitive” [42].  A circuit’s overall sensitivity is expressed either as a total 

count of sensitive bits or as a fraction of sensitive configuration bits.  Such data is 

directly related to the circuit’s dynamic SEU cross section, a term used elsewhere in the 

literature [85] (the word “dynamic” indicates that a functional circuit must be actively 

operating to determine this sensitivity).  Multiplying an FPGA’s static cross section by a 

circuit’s sensitivity fraction yields the dynamic cross section of a circuit.  This value can 

then be multiplied by the predicted radiation flux in space to arrive at an expected failure 

rate in the operational environment. 

Table 6.1 summarizes the results from SEU simulations on the CORDIC 

circuits described in Section 2 above.  As explained in Section 1, the experiment and 

control FPGAs were synchronized so that the data from the X2 FPGA could be verified 

against the fault-free computation being performed simultaneously on X1.  The data in 

Table 6.1 gives the number and fraction of configuration-bit SEUs that produce at least 

one erroneous data value during the simulator’s 1 msec error detection interval.  These 

are data errors that could not be corrected by mitigation methods on X2.  Thus low counts 

are desirable. 
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CORDIC Design Name 

(Virtex XQVR600cb228-4) 
(3,378,600 config bits) 

Area 
(Slices) 

# 
Sensitive 

Bits 

Fraction 
Sensitive 

Bits 
Davis TMR Iterative 1326 30,604 0.91% 

Davis RPR Iterative 540 31,837 

(350)* 

0.94% 

(0.01%)* 

Unprotected 32-bit Iterative 843 66,190 1.96% 

Unprotected 16-bit Iterative 238 21,065 0.62% 

Improved 32-bit TMR Iterative 2541 30,003 0.89% 

Improved 16-bit TMR Iterative 667 11,616 0.34% 

Improved 32-bit RPR Iterative 933 65,699 

(22,691)* 

1.94% 

(0.67%)* 

Improved 16-bit RPR Iterative 309 22,922 

(15,291)* 

0.68% 

(0.45%)* 

 
Table 6.1 SEU Simulator Results for Uncorrected Errors  

()* Errors in 8 Upper Bits Only 
 

Although not shown in Table 6.1, the data collected during SEU 

simulations also includes the total number of erroneous outputs accumulated during the 1 

msec interval that each SEU is allowed to persist.  Some bit upsets lead to data errors on 

every calculation, while other upsets only corrupt the output data for certain inputs.  

During the 1 msec error detection interval, the 32-bit CORDIC circuits process 168 

unique input values.  Thus upsets to the most critical bits cause a maximum error count of 

168, whereas less troublesome bit upsets cause a smaller number of errors.  These error 

counts can be interpreted as the probability of circuit failure when an SEU affects a 

particular bit, as described in [99].  The histogram in Figure 6.7 shows an example of the 

distribution of sensitive configuration bits in terms of this failure probability, using data 

from the “Davis TMR” circuit.  Simulation results for the various test circuits show that 

the vast majority of the error-producing SEUs affect the output for most or all of the input 

values.  Similar results were reported in [99].  Thus the overall circuit MTBE is 

essentially equal to the mean time between sensitive bit upsets. 
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Figure 6.7 Histogram of Error Counts for Sensitive Bits in “Davis TMR” Circuit 
 

The X1 control circuitry can perform more sophisticated error detection 

functions than simple correct vs. incorrect checks.  In light of the fact that systems 

utilizing results from FPGA circuits can often tolerate a slight amount of imprecision, it 

is useful to investigate how often a circuit suffering SEUs is likely to provide grossly 

inaccurate data versus only slightly corrupted results.  The RPR architecture is designed 

to ensure that output data is close to a correct result.  Additional simulations were run 

with the RPR circuits to measure their probability of failing this goal.  The data in Table 

6.1 lists two values for the sensitive bit measurements for each RPR circuit.  The first 

entries are based on a strict comparison for exact equality between X1 and X2 results.  

The second entries (listed in parentheses) are based on an error threshold that is only 

triggered when the X2 result differs from the X1 result in the 8 MSB positions.  Since 

RPR is designed to ensure approximate equality, a true design failure only occurs when 

the output exceeds the upper/lower bounds.  As seen in the table, this second failure 

criteria gives much lower sensitivity values.  Although the “Davis RPR” data shows a 

tremendous decrease in sensitivity according to this second criteria (350 bits vs. 31,837 

bits), it is important to realize that this data is skewed because it uses simple binary 
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counters for generating input values.  The “Davis” circuits’ counters are reset to all 0’s 

after each artificial SEU injection and never count high enough to affect the 8 MSBs in 

the 1 msec before the next SEU is injected.  Thus, many possible errors are not detected 

for the “Davis” circuit by using the approximate equality criteria.  The simulations with 

the improved RPR circuits provide a fairer evaluation because they included LFSR 

random number generators. 

It is also important to assess a fault tolerant design’s ability to mask data 

errors.  TMR and RPR are capable of hiding many internal data errors since the 

redundant module outputs are voted prior to being sent to output pins.  Several of the test 

circuits provided an output flag indicating when the voter detected mismatches among the 

redundant modules.  The data in Table 6.2 displays how many SEUs caused errors that 

were properly masked within X2, based on this output flag. 

 
CORDIC Design Name 

(Virtex XQVR600cb228-4) 
(3,378,600 config bits) 

Area 
(Slices) 

# Masked 
SEU 

Errors 

Fraction 
Masked 

Bits 
Davis TMR Iterative 1326 90,821 2.69% 

Davis RPR Iterative 540 29,376 0.87% 

Improved 32-bit TMR Iterative 2541 193,409 5.72% 

Improved 16-bit TMR Iterative 667 63,923 1.89% 

Improved 32-bit RPR Iterative 933 32,729 0.97% 

Improved 16-bit RPR Iterative 309 15,154 0.45% 

 
Table 6.2 SEU Simulator Results for Masked Errors 
 

Note that the TMR circuits have much larger values in Table 6.2 than in 

Table 6.1, whereas the RPR circuits have roughly equal numbers.  This shows that the 

more comprehensive redundancy structure of TMR is able to detect and correct a greater 

percentage of SEUs.  This is not surprising, however, since the RPR design is essentially 

blind to errors causing small numerical inaccuracies.  In the RPR circuits tested here, 8-

bit precision in the upper/lower bounds means many data errors are below the detection 

threshold. 

The SEU simulator provides detailed data about the identity, timing and 

effect of each sensitive bit detected.  However, the sheer scale of assessing the behavior 
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of over 3 million configuration bits makes the large datastreams produced by the 

simulator somewhat prone to error.  Graphical displays of the data can be of great value 

for making qualitative assessments of each SEU simulation run.  The results from an 

entire simulation can be displayed in a single visual image to check general behavior, or 

small segments of the data can be viewed in close-up plots to analyze finer details.  Such 

graphical methods are commonly used in the field [85], [1].  A mapping of design 

sensitivity can be created by translating the bitstream addresses of each sensitive 

configuration bit to its physical device location.  The left image in Figure 6.8 shows the 

sensitivity map created by plotting the locations of all 30,604 sensitive bits from the 

“Davis TMR” circuit. 

The right image in Figure 6.8 shows the layout of the “Davis TMR” 

circuit, as displayed in Xilinx’s “FPGA Editor” tool.  This tool permits viewing and 

editing of a fully placed-and-routed circuit.  FPGA resources that are actively utilized by 

the circuit (i.e., CLBs, muxes, clock buffers, I/O pins, etc.) are colored in the FPGA 

Editor display.  Only SEUs affecting the active circuit elements should cause data errors.   
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Figure 6.8 Detected Sensitive Bit Locations (left) vs. Circuit Layout (right) for “Davis TMR” 
 

Note that the sensitive bits on the left are very well correlated with the actual 

circuit layout on the right.  This provides assurance that the SEU simulator is properly 

injecting faults and detecting errors.  For each simulation run, the SEU sensitivity map 

was compared to the circuit layout as a quality assurance check of the simulator data. 
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b. Discussion 

As expected, the TMR circuits generally showed better SEU tolerance 

than the RPR circuits.  This is not surprising, since the RPR design assumes that errors 

with small numerical consequence can be tolerated by downstream systems, and are 

therefore allowed to propagate.  RPR’s strength is in preventing errors in the most 

significant bits of the output data.  As shown in Table 6.1, RPR demonstrated lower 

probability of suffering errors in the MSBs than across the entire output data vector.  This 

supports the intuitive expectations from Chapter II.  Comparing the number of errors in 

any bit position of the output data for the “improved” 32-bit and 16-bit CORDIC circuits, 

RPR appears to be roughly twice as sensitive as TMR (66,000 vs. 30,000 and 23,000 vs. 

12,000).  However, errors in the most significant 8 bits of the RPR output had similar 

frequency to errors anywhere in the TMR output.  Using this evaluation criteria, RPR was 

better for the 32-bit version but worse for 16-bit version..  This difference is because the 

8-bit redundant modules for RPR occupied a relatively larger fraction of the total circuit 

in the 16-bit case and therefore suffered a larger proportion of the total circuit-affecting 

SEUs.   

The data also confirms that TMR is effective in detecting and correcting 

large numbers of SEUs.  The TMR circuits show much higher counts of corrected errors 

(Table 6.2) than uncorrected errors (Table 6.1).  For example, the improved 32-bit TMR 

design fixed more than six times as many errors as it was unable to fix.  The basic TMR 

design includes three identical copies of an unprotected circuit.  Therefore, one would 

expect the TMR voter to detect roughly triple the number of errors as appear in a single 

unprotected 32-bit circuit  Indeed, the TMR circuit corrected 193,409 and the unprotected 

version produced 66,190 errors (a ratio of 2.9). 

Although the general trends in the data follow many of the predictions 

made in Chapter II concerning the relative performance of TMR and RPR, it is quite 

surprising to see such high residual SEU sensitivity with both techniques in relation to the 

unprotected circuits.  The rather high numbers listed in Table 6.1 prompted more careful 

examination of the SEU sensitivity maps.  As expected, the voter and output logic regions 

of the circuits contributed to the SEU sensitivity of the designs.  However, there were 

also many sensitive bits in the computation modules, which should be protected by the 
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redundant architecture.  The quantity and location of these unexpected sensitive bits were 

reconfirmed through extensive retrials with full- and partial-device simulations, all of 

which supported the original data. 

Several factors may contribute to the high sensitivity values for these 

circuits.  First, as pointed out in Section 2, the circuit designs did not follow all of 

Xilinx’s recommendations for implementing modular redundancy [68].  For example, 

Xilinx documentation describes using tri-state buffers instead of LUT logic for 

performing majority voting operations.  The circuits tested here used a behavioral VHDL 

circuit description and allowed the vendor synthesis tools to optimize the design.  

Incorporating Xilinx’s recommendations would require working more towards a 

structural VHDL design process to achieve maximum fault tolerance.  A real operational 

system would clearly benefit from such an effort. 

Another cause of the high sensitivity values may be the design synthesis 

software itself.  There were several cases in which inconsistent or incorrect circuits were 

produced using Xilinx ISE 6.x series software.  In some cases VHDL source code was 

tested in the ModelSim software to demonstrate proper behavior.  However, after 

compiling and running the exact same source code on the actual FPGA, the results did 

not match the ModelSim results.  Other problems were encountered trying to compile 

code using ISE 6.2 versus ISE 6.3.  For example, version 6.2 for LINUX correctly 

synthesized VHDL code with a nested series of multiply and add operations whereas 

version 6.3 for Windows could not synthesize the same code.  In another example, the 

VHDL code for a pipelined version of the CORDIC compiled correctly in 6.3 but not in 

6.2.  In light of these problems, and similar anecdotes from colleagues at other 

institutions, the CFTP group at NPS is planning to transition to a newer generation of the 

ISE software.  Following this transition, it would be worthwhile to repeat some of these 

experiments to see if the high sensitivities persist. 

Finally, some of these symptoms may be due to effects from “hidden half-

latches” as described in [7].  These half-latches are used throughout the Virtex FPGAs for 

storing constant values of 1’s and 0’s as sources for muxes and other elements [43].  

These memory elements are called “hidden” because their state is not reported through 

configuration readback and is set only upon initial device configuration (i.e., cannot be 
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fixed through partial reconfiguration).  In addition to radiation-induced upsets of these 

half-latches, Graham explains how they can also be corrupted through SEU simulation 

[7].  Mitigation methods for half-latch issues exist, but were not used on the circuits 

tested in this research.  Future work could involve testing these circuits after employing a 

half-latch removal method. 

Further investigation into these unexpectedly high residual SEU 

sensitivities is an important area for follow-on research.  More extensive radiation testing 

would be valuable for confirming these simulator results.  It would also be useful to 

repeat the SEU simulations with TMR and RPR implementations that follow more 

closely the techniques proposed in Xilinx’s application note on TMR methods [68].  For 

example, an RPR version of the 16-bit processor (with a 16-bit word for the full precision 

module and two 8-bit words for the approximate modules ) could be built to fit within the 

existing CFTP configuration such that the results from all three modules could be output 

and voted off-chip.  This would conform to Xilinx’s recommendation of triplicating all 

input and output signals.  However the CFTP system includes only 43 I/O pins 

connecting the X1 and X2 FPGAs, so full I/O replication is possible only for rather small 

data words. 

While some of the results from these SEU simulations are not fully 

understood, the data do generally follow the predictions.  An important contribution of 

this work is that a flexible and powerful SEU simulator is now available for testing 

various fault tolerant techniques.  In particular, because the simulator is virtually identical 

to the CFTP flight hardware, it offers excellent reliability predictions for circuit designs 

destined for use during the CFTP space mission.  The simulator can be used to compare 

the absolute and relative reliability of techniques such as TMR, RPR, selective 

redundancy, proprietary methods, and other concepts arising from the CFTP research 

program. 

 

C. POWER SIMULATIONS 
A primary advantage of an RPR approach over TMR is its reduced power 

consumption.  To quantify this benefit, power estimates were made for the circuits tested  
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in Section B.  Coupled with the SEU sensitivity data, these power estimates provide 

important information for comparing the effectiveness and efficiency of fault tolerant 

FPGA designs. 

Power consumption can be estimated using detailed circuit models before a 

particular design is implemented.  These power estimates require complicated models 

and, unfortunately, have limited accuracy due to uncertainties of various parameters [10].  

Although the absolute accuracy of such power models is not perfect, they do offer 

valuable information about the relative power estimates for different circuits.  

Alternatively, the power consumption of a design can be assessed after implementation 

onto the FPGA by using high-fidelity power measurement equipment.  The contributions 

from both static and dynamic power terms can be determined by measuring power 

consumption with and without clocking of the circuit.  Since static power is independent 

of signal transitions, it is equal to the non-clocked power measurement.  Dynamic power 

increases linearly with clock frequency.  Therefore, a total power estimate is only valid 

for a specified clock frequency or when expressed as a function of clock frequency.  

Unfortunately, the existing power supply configuration on the CFTP hardware makes 

accurate power measurements impractical.  A 28 V source supplies power to the entire 

CFTP package (CFTP board, ARM processor board and power conditioning board).  This 

arrangement makes it very difficult to accurately isolate and measure the anticipated 

small (~10 mW) fluctuations on the X2 experiment FPGA.  Therefore this research used 

computer modeling and simulations to estimate power. 

 

1. Power Simulation Environment 
Following the methodologies described by Rollins [9] and Tiwari [80], power 

simulations were performed using ModelTech’s ModelSim software and Xilinx’s 

XPower tool.  Rollins found that ModelSim provided precise timing information for all 

signals on the chip and accurately captured the effects of signal transients.  The accuracy 

of this process was verified by Rollins by precisely measuring power consumption on an 

actual hardware setup with Xilinx Virtex FPGAs.  Though the CFTP hardware 

configuration was not amenable to direct power measurements, the power simulation 

software used by Rollins was available.  Using a variety of circuits, Rollins demonstrated 
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that the simulation technique is fairly accurate.  Rollins’ largest discrepancy between 

actual and simulated power consumption was on the order of 50%, though most of the 

results agreed more closely.  Though such a large difference may be a cause for concern 

when seeking high precision estimates, it is less significant when comparing circuits that 

differ by 200% or more.  It was expected that power consumption of the RPR and TMR 

designs would differ by much more than 50%.  Therefore, it was determined that the 

uncertainties in the models would be relatively insignificant and power simulations 

would provide sufficient accuracy for this research.  Nonetheless, an important topic for 

further investigation is the verification of these simulation results with actual power 

measurements on the CFTP hardware.  Such work would require modifications to the 

CFTP circuit board(s) and/or power supply setup. 

Several conditions are required to make accurate power estimates.  These include 

1) a fully defined circuit description, 2) realistic signal toggle rates for each node, and 3) 

precise capacitance values for all signal lines.  The first condition means that the circuit 

under investigation must be completely mapped and placed-and-routed for the particular 

FPGA device being used.  Circuits described in schematic or high-level languages such 

as VHDL must be compiled into FPGA-specific formats completely describing the 

locations and interconnections between design elements.  The second condition indicates 

that a probabilistic or simulation-based estimate is needed to provide activity rates used 

in computing the dynamic power component.  The third condition is also critical in 

computing dynamic power.  While static power is a constant value for a particular FPGA 

device (see Chapter III), the second and third conditions allow for accurate determination 

of dynamic power consumption. 

Figure 6.9 shows the interaction of the various software tools used in the power 

simulation process.  Typically, the design is expressed as a set of VHDL source code 

compiled through a commercial FPGA synthesis package.  The most commonly used 

synthesis software includes Xilinx’s ISE suite and Synplicity’s Synplify products.  

Several more steps are required to create the final circuit design that can be loaded onto 

the target FPGA.  The mapping and place-and-route steps produce a Native Circuit 

Description file (*.ncd) that can be viewed and/or edited in the FPGA Editor tool.  

Processing this file through BitGen creates a Bitstream file (*.bit) that can be loaded onto 
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the device.  The NCD file can also be processed through a Xilinx utility program called 

“NetGen” that outputs a “flattened” VHDL version of the circuit and a System Data File 

(*.sdf) containing the timing information needed for high-fidelity circuit simulations. 

 

 
Figure 6.9 Power Simulation Process Flowchart 

 

ModelSim is then used to simulate the entire circuit at high time resolution.  By 

combining the information in the VHDL and SDF files, ModelSim predicts the sequence 

of signal transitions at every node in the design.  The accuracy of the simulation is 

controlled through a selectable time resolution setting.  In general, shorter timescales 

provide more accurate results, but create large output files.  A timescale of 10 psec was 

chosen for the CORDIC simulations to ensure the proper simulation of glitching events.  

The output from the ModelSim simulation is a Value Change Dump file (*.vcd) 

characterizing the frequency at which each signal node toggles. 

Finally, XPower combines the VCD and NCD files to calculate the total power 

consumption for the design.  XPower is essentially a proprietary database of capacitance 

values for each FPGA element.  Using the formulas for dynamic power presented in 

Chapter III, XPower uses this database and the signal transition data from ModelSim to 

output several power consumption reports.  For this work, the average power 

consumption was the most appropriate metric for comparing different circuits. 

The most important variables in the ModelSim runs were the frequency of the 

input clock, the length of the simulation run and the timesteps requested of the simulator.   

To match the CFTP hardware configuration, the data in Table 6.3-Table 6.4 was 

generated with a 50 MHz input clock.  Each run spanned 100 microsec of simulation 
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time.  This yielded results relatively quickly, prevented file sizes from growing too large, 

and ensured that the random number generator went through enough unique values to 

provide good statistical coverage.  To investigate the possible dependence on time 

resolution, the unprotected 32-bit iterative circuit was tested with several different 

timestep settings.  As shown in Table 6.3, power estimates increased only slightly as the 

time resolution was reduced below 100 psec.  Thus a 10 psec setting was used for the 

remaining runs. 

 
Timestep Increment (psec) 1 10 100 1000 
Total Power Estimate (mW) 184 184 182 172 

 
Table 6.3 Power Estimates for Unprotected 32-bit Iterative CORDIC Circuit 

 

2. Test Circuits 
The same circuits used for SEU simulations were run through the power 

simulation process described above.  First, the two “Davis” circuits used for radiation 

testing were evaluated.  Those 32-bit CORDIC circuits used simple binary counters and 

had the most primitive voter designs of the fault-tolerant circuits tested.  Next, several 32-

bit CORDIC variants were tested, including an unprotected design, a TMR design and an 

RPR design.  Data from these circuits were intended to show the relative power usage of 

TMR and RPR solutions.  Likewise, three different implementations of a 16-bit CORDIC 

circuit were tested.  In addition to allowing comparison of TMR and RPR, the 16-bit 

circuits also provide insight into the relationship between circuit size, complexity and 

power.  As described in Section B, the circuits built after the UC Davis radiation testing 

had various improvements, most notably the pseudo-random number generators (LFSRs) 

that create more realistic signal toggle behavior than the simple counters. 

In addition, power usage was evaluated for two pipelined CORDIC circuits that 

were not tested in the SEU simulator.  These circuits were tested to support assumptions 

made in earlier chapters about the potential power savings of a pipelined architecture.  

Following the procedures described in the previous section, additional circuits could 

easily be analyzed for power consumption to determine the most efficient designs for 

achieving fault tolerant FPGA solutions. 
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3. Results 
Table 6.4 presents the results gathered from the power simulations.  The rightmost 

columns in the table give the dynamic and total power consumption estimated from the 

XPower tool.  The output from XPower gives separate estimates for both static and 

dynamic power.  As explained in Chapter III, static power is a fixed quantity for a given 

FPGA device, regardless of the circuit implemented on the chip.  For the XQVR600 

device, XPower reports static power of 32.16 mW.  Therefore, the difference between the 

two right columns is simply this constant static power component.  Static power 

accounted for between 1% and 30% of the total power consumption for the circuits 

tested. 

Dynamic power, on the other hand, depends on the circuit design loaded on the 

FPGA and the input values to that circuit.  All of the CORDIC designs were self-

contained.  The only inputs were a clock and single reset line.  This made running 

simulations in ModelSim easier, as only a small sequence of test stimulus code was 

needed. 

 
CORDIC Design Name 

(Virtex XQVR600cb228-4) 
Area 

(Slices) 
Dynamic 

Power 
(mW) 

Total 
Power 
(mW) 

Davis TMR Iterative 1326 453 485 

Davis RPR Iterative 540 142 174 

Improved 32-bit TMR Iterative 2541 477 510 

Improved 32-bit RPR Iterative 933 172 204 

Unprotected 32-bit Iterative 843 152 184 

Improved 16-bit TMR Iterative 667 147 179 

Improved 16-bit RPR Iterative 309 77 109 

Unprotected 16-bit Iterative 238 73 105 

Unprotected 32-bit Pipeline 2058 2137 2169 

Unprotected 16-bit Pipeline 519 438 470 

 
Table 6.4 Power Estimates from XPower 

 

As expected, all of the TMR designs use significantly more power than the RPR 

and unprotected versions of each circuit, supporting the primary motivation for pursuing 



126 

the RPR concept as a means of conserving power.  Focusing on the dynamic power data, 

the 32-bit TMR circuits used 2.8-3.2 times as much power as RPR, while the ratio 

between the TMR and RPR 16-bit circuits was 1.9.  In fact, the RPR circuits used only 

marginally more power than the unprotected CORDIC designs, with a power overhead of 

between 5% and 13%.  The small 8-bit lookup tables used for the upper/lower bounds 

calculations occupy only a small portion of the FPGA and the RPR voter is fairly 

compact.  Thus it is not surprising that RPR shows terrific power performance. 

Careful examination of Table 6.4 reveals that, while the 32-bit TMR circuit uses 

about triple the power of the 32-bit unprotected circuit, the 16-bit circuits do not match 

expectations.  The TMR designs contain three copies of the unprotected circuit plus voter 

logic, thus one expects that TMR should use at least three times the power.  Further 

investigation revealed that the surprisingly low power value for the 16-bit TMR circuit is 

due to the lack of triplicated clock and output signals.  The TMR and RPR designs built 

for this research utilize single-clock circuits with on-chip voting, in part due to I/O 

limitations on the CFTP hardware.  The clock and output signals account for a large 

fraction of the dynamic power consumption in the relatively small 16-bit unprotected 

design, which occupies only 3% of the total FPGA.  To demonstrate this effect, two 

additional circuits were simulated with triplicated clock and output pins.  These circuits 

cannot be run on the actual CFTP hardware, but can be tested in ModelSim and XPower.  

Table 6.5 shows that when the clock network and output data is fully triplicated (thereby 

obviating the voter logic), the TMR design does indeed consume three times as much 

dynamic power.  Note that the unprotected circuit’s power value here is higher than that 

in Table 6.4 because the clock dividers in the original circuits had to be eliminated (the 

Virtex FPGA allows a maximum of 4 clock networks) and so the 50 MHz input clocks 

were driving all circuit components. 
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CORDIC Design Name 
(Virtex XQVR600cb228-4) 

Area 
(Slices) 

Dynamic 
Power 
(mW) 

Total 
Power 
(mW) 

Modified 16-bit TMR Iterative 

(triplicated clock and outputs) 

730 1083 1115 

Modified 16-bit Iterative 

(with clock divider removed) 

231 314 347 

 
Table 6.5 Power Estimates for Modified 16-bit CORDIC Circuits 

 

As explained in [9], dynamic power consumption can also be measured as the 

slope of total power as a function of frequency.  By running the same circuit at various 

clock frequencies, the dynamic power can be isolated from the total power.  While 

XPower provides this information directly, it is more difficult to measure using actual 

hardware.  Though this research did not involve measuring power on actual FPGA 

devices, such work would be useful for future research.  Having actual measurements and 

computer simulations for various clock frequencies would aid in validating the 

simulations.  Table 6.6 shows the frequency-dependent power estimates for two of the 

test circuits.  Again, the TMR circuit requires more than twice as much power as the RPR 

design. 

 
Total Power (mW) CORDIC Design Name 

(Virtex XQVR600cb228-4) 25 MHz 50 MHz 100 MHz 
Slope 
(mW / 
MHz) 

Improved 32-bit TMR Iterative 334 510 855 6.95 

Improved 32-bit RPR Iterative 139 204 331 2.56 

 
Table 6.6 Dynamic Power Inferred from Power Gradient 

 

Another way of interpreting the data from Table 6.4 is to determine the 

correlation between circuit size and power consumption.  As mentioned in earlier 

chapters, smaller circuits generally consume less power.  Figure 6.10 shows a scatter plot 

for the 8 iterative CORDIC circuits tested.  The circuits roughly follow the trend line, 

though the trend line was pulled upward by the “Davis TMR” data point.  In fact, both 

the “Davis TMR” and “Davis RPR” circuits use roughly the same amount of power as the 

corresponding “Improved” circuits but are physically much smaller.  This is because the 
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XST synthesis software performed poorly when compiling the VHDL version of the 32-

bit CORDIC module (see Appendix A).  By excluding that data point, the lower trend 

line shows very good correlation between circuit size and power consumption.  This 

result indicates that circuits with similar function and structure can be expected to have 

an approximately linear power-to-area relationship. 

 

 
Figure 6.10 Scatter Plot of Power Consumption vs. Circuit Size 

 

Though the pipelined circuits were designed to compute the same function as the 

iterative designs, their structure was entirely different.  Therefore the pipelined circuits 

did not follow the same power-area function as the other circuits.  Table 6.4 shows that 

the pipelined circuits use significantly more power than the iterative versions.  However, 

the pipelined CORDIC design is much more energy efficient on a per-calculation basis 

because of its greater throughput.  For example, the throughput of the 32-bit pipelined 

circuit is 37 times that of the iterative circuit (see Appendix A), though it only uses 12 

times as much power.  Similarly, Rollins [100] demonstrated that pipelined multiplier 

circuits can reduce both energy-per-calculation and overall power consumption since 

pipelining reduces glitching power (see Chapter III).  If circuit area is not as significant a 
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constraint as power, there are options for using a pipeline approach to achieve lower 

power.  For example, one might use a large pipelined circuit with lower clock frequency 

to achieve similar throughput to an iterative design.  Alternatively, one might run the 

pipelined circuit at full speed for short bursts of time and pause between processing sets 

of data to achieve lower average power consumption.  The tools and processes used in 

this section are valuable for assessing these kinds of design alternatives without relying 

upon hardware measurements. 

 

D. SUMMARY 
This chapter demonstrates that RPR is a viable option for achieving fault 

tolerance with minimal power cost.  Fault injection analysis with the unique CFTP SEU 

simulator shows that RPR is effective at reducing the probability of suffering SEU-

induced faults in the most significant bits of a circuit’s output.  Though the TMR circuits 

are roughly twice as effective at eliminating SEU sensitivity across all of the output data 

bits, RPR provides comparable SEU reduction across those bits protected by the error 

bounds calculations.  The TMR designs also require significantly more power.  Data from 

power simulations verify that TMR uses roughly twice the power of RPR.  Thus for 

applications where slight inaccuracy is acceptable or power is a significant constraint, the 

RPR architecture is superior to the typical TMR approach. 

Aside from the data presented in this chapter, this work has developed a set of 

tools and processes for effectively comparing different design options.  These tools allow 

for more informed decisions regarding the trade-offs involved in choosing a fault-tolerant 

architecture.  Data from SEU and power simulations feed directly into the total 

performance metric described in Chapter IV.  This permits the evaluation of many 

possible design alternatives before building hardware or relying on expensive radiation 

chamber testing. 
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VII. RADIATION TESTING 

A. OVERVIEW 

1. Purpose 
Given the many uncertainties involved in predicting the behavior of complicated 

electronic devices like FPGAs, it is important to have real-world data to support the 

conclusions from simulations and modeling.  In this context, “real-world” means 

subjecting actual FPGA circuits to radiation levels sufficient to generate SEUs as they 

would occur while on-orbit.  Radiation experiments were conducted in August and 

November of 2005 at Crocker Nuclear Laboratory on the campus of UC Davis.  These 

tests were intended to 1) validate the SEU simulation environment, 2) verify the 

operation of the CFTP fault detection/correction techniques and 3) estimate the actual on-

orbit response of the CFTP experiment.  Although extensive radiation testing has been 

performed on the same Virtex-II XC2V6000 device used in some of our experiments, to 

our knowledge this was the first live proton testing with the Virtex XQVR600 device.  It 

was expected that these experiments would corroborate results reported elsewhere in the 

literature for similar Xilinx FPGAs, but the primary concern in this work was the 

performance of the fault-tolerant architectures and techniques developed under the CFTP 

project. 

The main focus of this dissertation is predicting the performance of the RPR 

architecture in comparison to the more common TMR approach.  Estimating system 

reliability requires several assumptions.  In particular, computer system reliability in 

space depends on radiation conditions, the susceptibility of digital circuits to that 

radiation, and the complex interaction of signals within a circuit.  The space radiation 

environment has been studied extensively and detailed models are available for general 

use.  However, the remaining two factors are specific to a given technology and design.  

The radiation response of complicated devices, such as FPGAs, is difficult to predict.  

Real-world data gathered by exposing actual hardware to realistic radiation sources 

provides important validation of the simulation techniques described in Chapter VI. 

Several other research groups have conducted radiation testing to characterize the 

SEU response of FPGAs.  For example, data errors caused by configuration-bit faults, 
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which account for about 98% of all errors [99], are much more common than those due to 

flip-flop upsets.  Configuration bits in the I/O blocks, lookup tables and routing elements 

have similar susceptibility to SEUs, though the LUT bits are the most susceptible [44].  

Another important observation is that not all configuration-memory upsets lead to output 

data errors [42], [44], [85]. 

The CFTP test results reconfirm many of these conclusions.  More importantly, 

these results validate the SEU sensitivity measurements reported in Chapter VI.  Finally, 

this new data can be combined with other environmental and device data to make 

accurate predictions of on-orbit performance for the two CFTP experiments soon to be 

launched. 

 

2. Test Equipment, Setup, and Designs 

Radiation testing was performed at the Crocker Nuclear Laboratory using the 

cyclotron high-energy proton source as part of pre-launch testing of the NPS 

Configurable Fault Tolerant Processor (CFTP).  The monoenergetic 63.3 MeV proton 

beam was tuned to provide a nearly uniform 4 cm square irradiation pattern on the 

devices-under-test.  The radiation flux was controlled during testing to yield the desired 

SEU rate and total dose.  Limited data was collected during a short test run in Aug 2005, 

whereas the Nov 2005 testing produced a substantial volume of data. 

Two hardware configurations were tested at the Crocker facility.  The first 

configuration included two identical Xilinx Virtex FPGAs, one running the experimental 

circuits (“experiment FPGA”) and one commanding the experiment FPGA and 

controlling data flow in/out of the board (“control FPGA”), as shown in Figure 7.1 

below.  This configuration is labeled “C1” and corresponds to the CFTP flight 

experiment to be launched on the NPSat-1 and MidSTAR-1 satellites in late-2006.  The 

second configuration uses the same Virtex control FPGA, but has a more advanced 

Virtex-II device as the experiment FPGA.  This is labeled “C2” and is a rough prototype 

design for possible future CFTP missions.  Both configurations use a 50 MHz system 

clock, which is frequency divided within each FPGA into 25 MHz and slower clocks, as 

required by the various test circuits. 
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Figure 7.1 Hardware Configuration “C1” 

 

Several designs were tested on each hardware configuration.  Three shift register 

designs were implemented in both the C1 and C2 configurations.  These densely-packed 

shift register designs were expected to exhibit the highest sensitivity to SEUs since they 

had very high utilization of FPGA logic resources.  Two CORDIC designs, 

corresponding to the TMR and RPR designs examined in Chapter VI, were implemented 

on both hardware configurations.  Finally, a pipelined MIPS-like microprocessor design 

with distributed TMR error detection and voting was tested on the C2 hardware (this was 

not tested on the C1 hardware because it exceeded the logic capacity of the XQVR600 

device).  Table 7.1 lists the names used for each of these circuits, where “…c1” and 

“…c2” refer to the same circuit implemented on the different hardware configurations.  

Section B presents results for each hardware/circuit combination.  More detailed 

descriptions of the test equipment, setup and test circuits can be found in [98]. 
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Design Name Description 
sr_SRL_c1 (c2) Parallel shift registers w/ SRL16 macro 

sr_SRL+1_c1 (c2) Parallel shift registers w/ SRL16 and flip-flops 

sr_noSRL_c1 (c2) Parallel shift registers w/ flip-flops only 

cordic_GOLD_c1 (c2) 32-bit CORDIC w/ TMR 

cordic_APPROX_c1 (c2) 32-bit CORDIC w/ RPR 

PIX_c2 MIPS-like microprocessor w/ distributed TMR 

 
Table 7.1 Names and Descriptions of Test Circuits 

 

3. Test Procedure 

Figure 7.2 outlines the basic procedure followed during radiation testing.  These 

procedures are similar to those described in other FPGA radiation experiments [44], [99].  

It was important to control the rate at which SEUs occurred in order to isolate which 

configuration bit upsets were responsible for observable data errors.  In these experiments 

an SEU rate of one every 30 seconds was chosen to match some earlier diagnostic 

procedures for the CFTP experiment.  This rate is considerably slower than the SEU time 

interval of between 1 and 5 seconds in [44] and the interval of 1 second in [99].  

Subsequent enhancements to the CFTP setup permit higher data rates and future testing 

could easily support SEU rates of one per second or higher. 
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Figure 7.2 Radiation Beam Test Procedure 

 

Most of the test time for each circuit was spent looping between the “Count and 

report errors” and “3 sec status messages” steps while on-board counters automatically 

generated new input data vectors.  Every 3 seconds an output message was generated that 

reported the state of the input, output and error count values from the experiment and 

control FPGAs.  As long as the radiation-induced SEUs did not lead to observable data 

errors at the circuit output, no reconfiguration or device reset was necessary.  SEUs were 

allowed to accumulate until data errors were observed.  Every 30 seconds a complete 

configuration readback was performed and all accumulated SEUs reported.  Later 

analysis of the datastream identified which SEUs were preexisting and which were new 

during each readback. 

SEUs affecting flip-flops have temporary effects, may only cause a small number 

of data errors, and do not necessitate a device reconfiguration.  On the other hand, SEUs 

affecting configuration bits persist indefinitely, generate many data errors and can only 

be corrected through reconfiguration.  Therefore, various error counters were 
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implemented on the control FPGA to keep track of the number of data errors produced by 

the experiment FPGA.  These counters automatically triggered a reconfiguration of the 

experiment FPGA when the error counter(s) reached a predetermined threshold, 

indicating an error-producing configuration fault had occurred.  In addition, the test team 

was able to manually reconfigure and reset the experiment, as needed. 

 

B. RESULTS 
A 1 krad maximum radiation dose was set for each hardware configuration.  The 

C1 configuration sustained a total radiation dose of 730 rads during its 104 minutes of 

beam time, while the C2 configuration experienced 620 rads in 76 minutes of exposure.  

These total dose values were well below the 1 krad goal for this testing.  Although the 

devices tested are predicted to survive a total dose of at least 100 krad, a much more 

conservative limit was placed on this testing to avoid damaging the sole CFTP 

spaceflight prototype hardware.  Furthermore, a low dose was desired for this test 

campaign so that additional future testing could be performed on the same devices.  Table 

7.2 summarizes the data collected during this testing.  Runs 1 through 6 were conducted 

with the C1 configuration and generated a total of 390 configuration SEUs.  Runs 7 

through 16 used the C2 setup and generated 2,258 configuration SEUs.  The following 

sections describe the results in more detail. 
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Design and Run # Total # 
SEUs 

Re-
configs 

Beam 
time 
(sec) 

Sec per 
SEU 

Multi-bit 
upsets 

sr_SRL_c1_run1 27 5 489 18.1 1 

sr_SRL+1_c1_run2 35 11 329 9.4 2 

cordic_GOLD_c1_run3 79 1 1,346 17.0 0 

cordic_APPROX_c1_run4 106 0 1,915 18.1 0 

sr_noSRL_c1_run5 26 1 421 16.2 0 

sr_SRL+1_c1_run6 117 26 1,755 15.0 4 

      
sr_SRL+1_c2_run7 47 9 86 1.8 1 

sr_SRL+1_c2_run8 414 52 758 1.8 8 

cordic_GOLD_c2_run9 319 5 458 1.4 5 

cordic_APPROX_c2_run10 419 0 669 1.6 5 

PIX_c2_run11 681 8 1,374 2.0 11 

sr_SRL_c2_run13 172 18 302 1.8 0 

sr_noSRL_c2_run14 172 57 330 1.9 5 

sr_noSRL_c2_run15 27 16 143 5.3 0 

sr_SRL+1_c2_run16 75 17 446 5.9 2 

 
Table 7.2 Summary of Radiation Test Results 

 

1. Fluence-to-SEU and Cross Section 
A fundamental measure of a device’s radiation susceptibility is the amount of 

radiation required to cause a fault and/or error.  This information permits the prediction 

of upset rates in different orbital regimes.  In this research, the main concern is the 

sensitivity of FPGA configuration bits since flip-flop upsets are much less common.  

Configuration-bit upsets are classified as faults, as they do not necessarily lead to actual 

data errors.  In this chapter the term SEU refers specifically to upsets affecting 

configuration bits, since the tests were designed to only detect this type of fault.  As 

explained earlier, these bits comprise the vast majority of memory elements on the 

FPGAs, accounting for over 99% of faults during radiation testing and on-orbit 

operations [99]. 

The column “Sec per SEU” in Table 7.2 shows a fairly consistent SEU rate within 

each hardware configuration, with a few notable outliers.  A more precise measurement 
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of radiation susceptibility can be gained by looking at the actual fluence levels, as given 

in Table 7.3.  Fluence, as measured in protons per cm2, depends on the intensity of the 

radiation beam and the exposure duration.  The cyclotron was tuned to nearly the same 

flux levels for test runs 1 through 14.   However, for test runs 15 and 16 the cyclotron 

was set to a lower beam current to reduce the SEU rate on the more sensitive Virtex-II 

device.  This explains the apparent anomaly in the bottom two rows of Table 7.2.  The 

bottom two rows of Table 7.3 show “Fluence-to-SEU” values consistent with the other 

C2 test runs, as expected.  The C1 results in Table 7.3 compare favorably with data 

presented in [99], where the authors found a fluence-to-SEU of between 9.8 and 13 

p+/cm2 for three test circuits on a Virtex 1000 FPGA. 

 
Design and Run # Total # 

SEUs 
Fluence 
(p+/cm2) 

x 108 

Fluence- 
to-SEU 
(p+/cm2) 

x 106 

Sec per 
SEU 

sr_SRL_c1_run1 27 4.08 15.1 16.9 

sr_SRL+1_c1_run2 35 2.91 8.3 8.2 

cordic_GOLD_c1_run3 79 11.9 15.1 17.0 

cordic_APPROX_c1_run4 106 16.8 15.8 18.1 

sr_noSRL_c1_run5 26 3.70 14.2 16.2 

sr_SRL+1_c1_run6 117 15.5 13.2 13.9 

     
sr_SRL+1_c2_run7 47 0.71 1.5 1.8 

sr_SRL+1_c2_run8 414 8.63 2.1 1.8 

cordic_GOLD_c2_run9 319 3.88 1.2 1.4 

cordic_APPROX_c2_run10 419 5.61 1.3 1.6 

PIX_c2_run11 681 12.1 1.8 2.0 

sr_SRL_c2_run13 172 2.70 1.6 1.8 

sr_noSRL_c2_run14 172 2.97 1.7 1.9 

sr_noSRL_c2_run15 27 0.35 1.3 5.3 

sr_SRL+1_c2_run16 75 1.06 1.4 5.9 

 
Table 7.3 Fluence-to-Upset by Test Circuit 

 

As expected, the C2 experiment FPGA was more sensitive than the C1 device.  

C2’s more advanced Virtex-II device is based on 0.15 micron technology compared to 
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0.22 micron technology in the C1 Virtex device.  These smaller dimensions permit 

greater logic density.  “Equivalent gate” count is a common method for comparing FPGA 

capacity.  Xilinx lists the equivalent gate counts for the XQVR600 and XC2V6000 

devices tested as 600,000 and 6,000,000 gates, respectively.  Based on this ratio, one 

would expect the Virtex-II device to be roughly 10 times more sensitive since both 

devices have similar semiconductor die sizes.  Summing the “Total # SEUs” and 

“Fluence” values from all runs in Table 7.3, the fluence-to-upset ratios are 14.1x106 for 

C1 and 1.69x106 for C2.  This indicates that C2 is more than 8 times as sensitive as C1, 

which corresponds fairly well with the rough estimate of 10 based simply on equivalent 

gate counts. 

Another metric commonly used in radiation studies is cross section (see Chapter 

IV).  Data from Table 7.3 can be combined with the size of the configuration memory on 

each device to estimate configuration bit cross sections.  The number of configuration 

memory cells on each device is approximately equal to the size of the configuration 

bitstream files.  The C1 device’s bitstream contains 3,607,968 bits and the C2 device has 

21,849,504 bits.  This translates into proton cross section values of 2.0*10-14 and 2.7*10-

14 cm2 per configuration bit.  Previously published data on another Virtex device gives a 

proton cross section of 2.2*10-14 cm2 per configuration bit [88].  This matches very well 

with the data collected for the CFTP experiments. 

Finally, it should be noted that the anomalously-high SEU sensitivity observed on 

test run 2 is not fully understood.  Nothing in the test logs indicates a problem with the 

radiation source or device under test.  Test run 6 on C1 and runs 7 & 16 on C2 used the 

same “SRL+1” circuit design, but showed sensitivity values similar to the other circuits.  

Thus, it appears that run 2 was a statistical outlier or that some unknown factor affected 

its results. 

 

2. Variability of SEUs and Bit Sensitivity 
While the preceding analysis shows totaled values for each data run, it is 

interesting to note the considerable variability of SEU rates within each run.  The random 

nature of the proton-induced SEU process causes a distribution in the rate of SEU events.  

This can be seen by plotting SEUs as they are detected throughout the tests.  The 
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following two figures show the SEU time history for data runs with the RPR version of 

the 32-bit CORDIC processor.  Figure 7.3 shows the SEU profile from run 4, which used 

the C1 hardware.  Note that the SEU rate varies between 0 and 6 SEUs during each 30 

second readback cycle.  This highlights the need to collect large enough data sets to 

average out this variability. 

 

 
Figure 7.3 SEU Profile for Run 4 (C1 Hardware) 

 

Figure 7.4 shows the SEU time history from run 10, which used the C2 hardware.  

This run also demonstrates the fluctuating rate at which SEUs appear on the device.  This 

rate ranges from 7 to 28 SEUs per readback interval, with an average value of 18. 
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Figure 7.4 SEU Profile for Run 10 (C2 Hardware) 

 

Another important conclusion from this testing is that most configuration-bit 

upsets do not cause data corruption.  The term “sensitive bits” is described in [99] and is 

often used to classify those particular configuration bits that, when upset, can lead to 

errors in output data.  The column labeled “Reconfigs” in Table 7.2 indicates how often 

configuration-bit SEUs caused observable data errors and, consequently, triggered a 

device reconfiguration.  In some of the shift register test circuits, it is possible that flip-

flop upsets could also trigger reconfiguration if they occur near the beginning of the shift 

register “train,” but this is estimated to account for less than 5% of the reconfigurations.  

Comparing the number of reconfigurations to the SEU counts yields an average 

sensitivity fraction of 11% for C1 and 8% for C2.  Thus about 1 in every 10 configuration 

SEUs is likely to cause data errors. 

A large reason for this phenomenon is that most designs do not fully utilize the 

FPGA resources.  Unused portions of the device do not contribute to the sensitive-bit 

count.  Nonetheless, even designs that heavily utilize the FPGA show much smaller 

sensitive-bit populations than might be expected.  Other radiation tests have also shown 

this behavior.  For example, data from ion testing in [44] shows error-to-SEU ratios of 
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between 1:6 and 1:783, depending on which circuit and ion species were tested.  Another 

proton study reports a sensitivity fraction of between 5% and 15% [99], which is very 

similar to results from CFTP testing. 

 

3. Polarity of Bit Flips 
Another interesting question is whether there is any preferential polarity with 

which SEUs occur.  An assumption made in the fault injection simulator and associated 

reliability estimates is that 0-to-1 and 1-to-0 bit flips are equally likely.  As seen in the far 

right column of Table 7.4, the C1 circuits appear to have roughly equal ratios of 0-to-1 

and 1-to-0 flips, whereas the C2 circuits have a dramatically higher number of 0-to-1 

flips. 

To better understand this discrepancy, one must look at the ratio between 0 and 1 

values in the fault-free configuration bitstream for each circuit design.  If there were no 

preferential polarity of bit flips, then the observed ratio of upsets should match the ratio 

of bitstream 0 and 1 values.  Table 7.4 shows the bitstream count and observed SEU 

polarity ratios for each circuit design. 
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Bitstream SEU Polarity 
Design and Run # “0” Bits “1” Bits Ratio 0 1 1 0 Ratio 

sr_SRL_c1_run1 2,564,645 1,043,323 2.46 16 13 1.23 

sr_SRL+1_c1_run2 2,625,121 981,847 2.67 15 25 0.60 

cordic_GOLD_c1_run3 2,547,015 1,060,953 2.40 53 26 2.04 

cordic_APPROX_c1_run4 2,534,019 1,073,949 2.36 52 54 0.96 

sr_noSRL_c1_run5 2,562,171 1,045,797 2.45 13 13 1.00 

sr_SRL+1_c1_run6 - - 2.67 76 50 1.52 

C1 Totals & Average Ratios  12,832,971 5,205,869 2.47 225 181 1.24 

   
sr_SRL+1_c2_run7 18,979,250 2,870,254 6.61 45 3 15.0 

sr_SRL+1_c2_run8 - - 6.61 366 53 6.91 

cordic_GOLD_c2_run9 21,758,566 90,938 239 320 4 80.0 

cordic_APPROX_c2_run10 21,810,370 39,134 557 423 2 212 

PIX_c2_run11 21,244,996 604,508 35.1 663 18 36.8 

sr_SRL_c2_run13 19,104,432 2,745,072 6.96 164 8 20.5 

sr_noSRL_c2_run14 19,548,310 2,301,194 8.50 160 17 9.41 

sr_noSRL_c2_run15 - - 8.50 25 2 12.5 

sr_SRL+1_c2_run16 - - 6.61 67 9 7.44 

C2 Totals & Average Ratios  122,445,924 8,651,100 14.2 2,233 116 19.3 

 
Table 7.4 Comparison of Observed SEU Polarity and Bitstream Values 

 

These results are somewhat surprising because they show a large difference 

between the expected SEU polarity ratios and those observed in actual radiation testing.  

The C1 circuits all had actual ratios less than predicted from the bitstream analysis, with a 

nearly equal rate of 0-to-1 and 1-to-0 bit flips.  Several factors can help explain this 

discrepancy.  The Xilinx bitstream data files all include numerous “padding” bits 

throughout the bitstream.  These pad bits ensure the proper alignment and flushing of 

various registers during device configuration.  By default, pad bits are set to zero.  Since 

the pad bits do not correspond to actual configuration memory cells, they cause an 

upward skew to the “bitstream ratio” values.  More than 6% of the bits in each 

configuration frame are pad data, thereby accounting for some of this discrepancy.  In 

addition, there are large BlockRAM elements on the Virtex FPGA that were not used in 

the C1 test circuits for these experiments.  The configuration readback program for C1 



144 

was not set up to detect SEUs in these portions of the device.  The bitstream values for 

these unused BlockRAM regions are set to zero, accounting for over 3% of the bitstream.  

Ignoring these two populations of predominately zero values reduces the average 

predicted SEU polarity ratio for C1 from 2.47 to 2.24.  There is still a significant 

difference between this estimate and the observed ratio of 1.24, thus it appears that 1-to-0 

SEUs have higher likelihood than 0-to-1 SEUs on the Virtex device. 

Data from C2 showed greater variability among the test circuits and, in general, 

an opposite trend to that seen with C1.  The actual SEUs observed favored the 0-to-1 

polarity.  Although the BlockRAM bit upsets were detectable in the C2 setup, the issue of 

pad bits causing a bias towards higher zero-counts in the bitstream files also applies to 

the C2.  However, this would exacerbate the discrepancy between the predicted and 

observed values.  Thus, the Virtex-II device seems more susceptible to 0-to-1 bit flips. 

Further investigation into these phenomena is warranted.  One way of gaining a 

better understanding is through examining the transistor properties of each device.  A 

similar study with an SEU-hardened Atmel FPGA revealed that 0-to-1 upsets were 

roughly 50 times more likely than 1-to-0 upsets [101].  The explanation for this strong 

bias was the particular layout of NMOS and PMOS in the configuration memory cells.  

An analysis of the Xilinx devices may yield similar explanations, and based on these test 

results one might expect to find that the Virtex and Virtex-II parts use different memory 

structures.  However, such analysis would require detailed information about the internal 

design of Virtex devices, which is not made publicly available by Xilinx. 

These test results have highlighted that FPGAs may be more susceptible to certain 

polarities of configuration-bit upsets.  The standard industry practice for calculating 

orbital upset rates assumes a single sensitivity value (e.g., fluence-to-upset or cross 

section), regardless of polarity.  If additional testing and/or analysis confirms that there 

are indeed preferred bit-flip orientations, an intriguing possibility for improving FPGA 

reliability would involve developing bitstreams with higher percentages of the less 

susceptible bit polarity. 
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4. Multiple Bit Upsets (MBUs) 

Although the discussion up to this point has assumed that each SEU corresponds 

to a single bit flip, it is possible for single particle events to upset multiple bits.  This 

phenomenon, known as multiple bit upset (MBU), is well-known [17] and recent results 

have been published describing MBU probabilities on FPGA devices [102].  Multiple bit 

upsets occur when a single energetic particle either directly or indirectly generates 

sufficient excess charge density in a localized region to affect more than one memory 

cell.  MBUs are more common with ion radiation than proton radiation, as heavy ions 

transfer much more energy into the semiconductor and thereby affect a larger region of 

the device. 

MBUs are becoming more common as new FPGAs are developed with denser and 

more sensitive logic elements.  Proton and heavy ion radiation testing has demonstrated 

the progression in MBU frequency over several generations of Xilinx’s Virtex devices.  

As a percentage of all proton-induced SEU events, MBUs accounted for 0.04% on the 

Virtex, 1% on the Virtex-2, and 3% on the Virtex-4 FPGAs.  With ion testing, 7% of all 

Virtex and 35% of all Virtex-2 single events involved the upset of multiple bits [102]. 

As expected, a small number of MBUs were observed during testing of the CFTP 

devices.  Total MBU counts for each test run are listed in Table 7.2, where each MBU 

event is counted as a single SEU.  Averaged over all the runs on the Virtex board, they 

accounted for 1.8% of the configuration upsets.  On the Virtex-2 board they totaled 1.6% 

of all SEUs.  While the Virtex-2 results correlate fairly well with the results in [102], the 

Virtex data here shows a surprisingly high frequency of MBUs.  One possible 

explanation for this is that several of the test circuits (labeled in Table 7.2 as 

“sr_SRL…”) utilize the Virtex “SRL” feature, which converts some of the FPGA’s 4-

input lookup tables into 16-bit shift registers.  All of the MBUs detected in the Virtex 

runs involved these SRLs, suggesting this may be the cause of the high MBU rates.  

Additional testing is required to resolve whether this anomaly is due to the particular 

circuit being tested or the physical behavior of the Virtex device. 

The CFTP SEU simulator discussed in Chapter VI only injects one fault at a time 

and does not simulate MBUs.  This is also true for other SEU simulation systems [8], 

[99].  MBUs are neglected in these simulations primarily because they are rare, and 
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therefore have a small affect on design sensitivity and reliability calculations.  However, 

MBUs are more important when using newer devices or considering orbits with 

significant populations of heavy ions.  MBUs could be included in the CFTP simulator 

with minor modifications. 

 

C. VALIDATION OF SIMULATIONS 

While the preceding section demonstrates that the CFTP system accurately detects 

and reports faults in a real radiation environment, the most important result from 

radiation testing is the validation of the SEU simulator of Chapter VI.  Following the 

methodology in [99], the CFTP radiation test results for the C1 configuration were 

compared against predictions from the SEU simulator.  These results show that the 

simulator accurately simulates radiation-induced SEUs.  This validation provides 

confidence in the reliability assessments made in Chapter VI, in particular the relative 

performance of RPR and TMR. 

Two methods were used in this validation process.  The first method involved 

manually injecting into the simulator specific faults observed during radiation testing and 

verifying that the data outputs responded in the same manner.  Since the radiation flux 

was controlled to ensure only a small number of SEUs occurred during each 30 sec 

configuration readback cycle, the exact bits causing persistent data errors could be easily 

isolated.  These bits were then toggled in the controlled lab environment to verify 

whether or not they caused observable data errors in the radiation environment.  Due to 

the tedium of this process, only a small fraction of the radiation-induced faults were 

recreated in this manner.  Nonetheless, the CFTP response in the simulator matched that 

seen during testing in all trials.  Table 7.5 shows verification data for the first 3 SEUs 

observed during radiation testing of the TMR version of the CORDIC design.  The 

columns under the heading “Data Error?” show equivalence between the radiation testing 

and artificial fault injection results.  The other columns identify the specific configuration 

bits for the manual fault injection mode, as detailed in [103]. 
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Data Error? 
Design and Run # Byte 

Location 
Read vs. 
Expected 

Maj. 
Addr. 

Tile 
(Row,Col) 

Bit 
(Row,Col) 

Sim. Rad. 

01d31d 
0x82 vs 

0x02 
21 

(49,53) 

(08,27) 
No No 

027593 
0x38 vs 

0x18 
28 

(27,26) 

(06,38) 
No No cordic_GOLD_c1_run3 

02e026 
0x02 vs 

0x00 
33 

(46,59) 

(12,25) 
Yes Yes 

 
Table 7.5 Example of Manually Verifying SEU Effects 

 

The second method involved exhaustive simulator testing of every bitstream value 

using the automatic mode.  This automatic mode is the main operational mode for the 

simulator and was used in generating the design sensitivity results in Chapter VI.  Design 

sensitivity data for both the TMR and RPR versions of the 32-bit CORDIC processor 

were compared against the 185 configuration upsets observed during testing.  Comparing 

results from upsetting these same 185 bits validated the automated mode of the SEU 

simulator.  Table 7.2 shows that only 1 of these upsets led to an actual data error, which 

was verified as shown in Table 7.5.  The single sensitive bit (located within byte 

0x02e026 of the TMR CORDIC design) causes data errors in both the simulator and 

radiation data.  Likewise, the remaining 184 bits are all found to be non-sensitive in the 

simulator and radiation data. 

Figure 7.5 shows a close-up view of a portion of the SEU sensitivity map 

generated from the simulator.  The black squares in the figure represent individual 

configuration bits that, when artificially upset in the simulator, lead to data errors.  The 

remaining configuration bits are non-sensitive and appear in the map as white squares.  

Radiation-induced SEUs that occur in the white regions are not expected to lead to data 

errors.  The red square (circled) represents a bit that experienced an SEU during radiation 

testing, but did not cause any data errors.  This red square coincides with a white non-

sensitive bit, thus corroborating the simulator data declaring this a non-sensitive bit.  This 

comparison method was used to verify that that all 184 non-sensitive bits from radiation 

testing correspond with non-sensitive bits as determined by simulations. 
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Figure 7.5 Locations of Sensitive Bits (Simulator, black) and SEUs (Radiation, red) 

 

Likewise, the single sensitive bit detected during radiation testing was replicated 

in the simulator.  Figure 7.6 shows the region of the FPGA in which the error-producing 

SEU appears in the Davis data.  Again, the black squares show error-producing bits found 

in the simulator and the circled red square shows a non-error producing bit that was upset 

in radiation testing.  The important feature shown in this figure is the green square, 

surrounded by a diamond, which is the location of the error-producing SEU found during 

run #3 of Davis testing.  The green color indicates that both the simulator and radiation 

data show this bit to be error-producing. 
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Figure 7.6 Correlation of Sensitive Bit (green) from Simulator and Radiation  

 

Run #4 of the Davis testing identified 106 SEUs, none of which triggered a 

reconfiguration.  Simulator data indicates that two of these 106 bits are actually capable 

of causing data errors.  However, the simulator shows that these errors occur in the least 

significant positions of the output data.  Thus, the 8-bit RPR upper/lower bounds 

checking would not detect such errors and trigger a reconfiguration.  The radiation-

induced SEUs affecting these two particular bits occurred during the 32nd and 35th 

readback cycles.  Analysis of the run #4 data file shows that the LSBs in X2’s output did, 

in fact, differ from the X1 solution, starting in readback cycle 32.  This implies that the 

first of these SEUs was responsible.  The effect of the second SEU is unclear because the 

first SEU was not corrected (no reconfiguration occurred) and therefore continued to 

affect the data output.  Throughout the remainder of run #4 the least significant bits of the 

32-bit X2 output had random errors. 

The version of the SEU simulator used in this dissertation was customized to 

work only with the CFTP flight system.  Unfortunately, the simulator is not directly 

compatible with the Virtex-II board.  Therefore, radiation data with the C2 configuration 

was not used in this validation effort.  As listed in Table 7.2, the CORDIC circuits on the 
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C2 hardware experienced 5 data-corrupting bit upsets and a total of 738 SEUs.  All 5 of 

the data-corrupting SEUs occurred on the “GOLD,” or TMR, version.  This data would 

be of great benefit if the SEU simulator were expanded to work with the Virtex-II board.   

Although very few sensitive bits were encountered in radiation testing, both 

sensitive and non-sensitive bit SEUs provide valuable confirmation of the accuracy of the 

SEU simulator.  Furthermore, since the results from Chapter VI show a low percentage of 

sensitive bits, it isn’t surprising that only 3 out of 185 SEUs caused detectable errors for 

the CORDIC designs on C1.  The SEU simulator measured these circuits to have bit 

sensitivity percentages of 1% to 3%.  Therefore, one would expect to see less than 6 

sensitive bits out of a population of 185. 

 

D. ON-ORBIT RELIABILITY 

The primary motivation for conducting ground-based radiation testing and SEU 

simulations is to estimate a system’s reliability in its operational environment.  

Combining test and/or simulation data with models of the space radiation environment 

provides useful predictions of how often a particular device is likely to malfunction.  This 

information is critical for determining whether system-level reliability requirements can 

be met with a particular design solution. 

On-orbit reliability has long been a concern to the spacecraft computing 

community, and interest in the radiation tolerance of FPGAs is rapidly increasing.  In a 

space experiment similar to the CFTP experiment, the Australian FedSat satellite was 

launched in Dec 2002 with a high-performance computing experiment package including 

a Xilinx XQR4062XL FPGA.  The designers predicted an SEU interval of between 9.7 

minutes and 110 hours for a 680 km sun-synchronous orbit [3].  The large range in this 

estimate is due to the variability in space radiation levels caused by solar activity.  It is 

important to note that the FedSat FPGA is an older generation than the Virtex parts used 

in the CFTP experiment (62,000 vs. 600,000 equivalent gates).  If CFTP flew in a similar 

orbit to FedSat, it would be expected to have roughly 10 times the SEU rate, or between 2 

and 1,400 SEUs per day. 
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Another FPGA space computing program is currently underway at Los Alamos 

National Lab with the Cibola Flight Experiment satellite [16].  This satellite will be 

launched in late-2006 on the same STP-1 mission as the CFTP experiments and uses a 

total of 9 Xilinx Virtex XQVR1000 devices.  In the planned 560 km 35º inclination orbit, 

each Virtex FPGA is expected to see between 3 and 100 SEUs per day, depending on 

solar flare activity [1].  The FPGAs on CFTP are the same generation as the Cibola 

devices, but are somewhat smaller (600,000 vs. 1,000,000 equivalent gates), and should 

therefore suffer roughly 60% as many SEUs, or between 2 and 60 per day. 

Accurate estimation of on-orbit performance requires a thorough understanding of 

the space radiation environment.  The spacecraft’s orbit determines the quantity, 

composition and variability of ionizing radiation the spacecraft will encounter.  In low 

earth orbit (LEO), trapped high-energy protons are the dominant source of SEUs, though 

their population varies as the earth’s magnetosphere fluctuates in response to solar 

activity.  Furthermore, protons in the region known as the South Atlantic Anomaly 

(SAA) are responsible for the vast majority of SEUs in LEO, even though most LEO 

spacecraft spend less than 15% of their orbits in the SAA region.  At geosynchronous 

altitude, SEUs are predominately caused by cosmic rays and solar flare particles.  The 

radiation environment at high altitudes varies widely due to solar flare activity [17]. 

Models of the complex and variable space radiation environment include AP-8, 

SPACERAD, CHIME, JPL and CREME.  The expected SEU rates quoted earlier for the 

FedSat and Cibola spacecraft were based on these computer models.  The European 

Space Agency hosts a website called SPace ENVironment Information System 

(SPENVIS) that provides access to the most commonly used radiation models for making 

detailed predictions of the space environment.  These models were used in this research 

to predict upset rates of CFTP in its planned 560 km orbit.  Considering only the trapped 

proton population, the orbit-averaged flux of sufficiently energetic protons (>20 MeV) 

varies between 60 and 200 per cm2 per second, depending on solar conditions and which 

model is used.  Based on the data from Section B above, these radiation levels should 

produce 0.37-1.2 SEU/day in the Virtex device and 3-10 SEU/day in the Virtex-II device.  

Using the CREME96 models and some slightly different assumptions, Coudeyras  
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predicted a Virtex upset rate of 0.2 SEU/day and Virtex-II rate of 1.8 SEU/day [98].  

Table 7.6 compares the SEU rate estimates calculated from the CFTP test data with those 

extrapolated from similar studies [1], [3]. 

 
SEU per day (LEO orbit) Method of Calculation 

C1 (Virtex) C2 (Virtex-II) 

CFTP radiation test data + SPENVIS models 0.37 – 1.2 3 – 10 

CFTP radiation test data + CREME96 models 0.2 1.8 

FedSat data (scaled from XQR4062 results) 2 – 1,400 20 – 14,000 

Cibola data (scaled from XQVR1000 results) 2 – 60 20 – 600 

 
Table 7.6 Summary of Radiation Test Results 

 

The numbers based on the CFTP-SPENVIS and CFTP-CREME96 data are 

considerably lower than the values extrapolated from studies on similar devices.  Because 

the cross sections measured in the CFTP tests are very similar to other published test 

results, this discrepancy must be due to differences in the assumed proton flux levels.  

For example, the values produced from the SPENVIS tools may be somewhat low.  They 

estimate between 5*106 and 1.7*107 p+/cm2/day, whereas graphs in [17] show between 

107 and 108 p+/cm2/day with energy greater than 30 MeV without solar flare 

enhancement. 

Differences in how the models predict strong solar flare events could account for 

the discrepancy in the upper bounds.  There is disagreement in the literature about the 

intensity of “normal” and “anomalously large” solar flares, which is reflected in the 

different radiation models.  Two additional factors may explain the discrepancy in the 

lower bounds.  First, the calculations performed here discount any affect of heavy ions 

(cosmic rays), as most researchers consider them negligible in LEO.  The FedSat and 

Cibola data may include the contribution of these energetic ions.  Second, the FedSat and 

Cibola data do not report the proton energy threshold used in their studies.  A threshold 

lower than the 20 MeV used here would increase the estimated SEU rates since the 

proton population decreases exponentially as a function of energy level.  Some of the 

researchers involved in the Cibola study indicate in a separate report that they typically 

use a threshold of 10 MeV. 
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While determining SEU rates is an important part of estimating reliability, the 

SEU rates alone are not sufficient to compare the overall fault tolerance of different 

designs.  From a system-level perspective, the primary concern is operational reliability, 

or the probability that the system provides correct results.  The functional reliability of an 

FPGA circuit can be predicted by combining estimated SEU rates with design sensitivity 

measures from a fault simulator like that in Chapter VI.  For example, if only 10% of the 

configuration bits in a particular design are capable of causing data errors, the actual 

failure rate would be 10% of the SEU rate.  Fault-tolerant FPGA designs seek to 

minimize the fraction of SEUs that lead to errors.   

Comparison of various fault tolerance methods must be based on the functional 

reliability of each approach.  Fault injection simulations provide the design sensitivity 

data for competing design alternatives.  This data can then be used to calculate the 

reliability metric incorporated into the Total Performance Metric of Chapter IV.   

Together, the simulation and TPM tools provide a objective method for evaluating the 

overall efficiency of various fault-tolerant designs. 

An important result from this chapter is the validation of the SEU simulator from 

Chapter VI.  Analysis of nearly 200 proton-induced SEUs affecting two CORDIC test 

circuits shows that the C1 hardware behaves identically in the simulator and the ground-

based radiation test environment.  Hence, it appears that the simulator accurately 

represents the response of the CFTP hardware to real space radiation conditions.  The 

successful performance of the configuration readback and reconfiguration mechanisms in 

both the simulator and radiation testing gives confidence that these procedures will 

function effectively during CFTP flight experiments.  Once the CFTP experiments are 

launched, these conclusions can be verified by SEU data in the real orbital radiation 

environment.  In addition, analysis of over 2,500 SEUs reveals proton cross section 

values for Virtex and Virtex-II FPGAs of 2.0*10-14 and 2.7*10-14 cm2 per configuration 

bit, respectively, which is comparable to the published value of  2.2*10-14 cm2.  Finally, 

using this data to estimate on-orbit SEU rates indicates that in its low-earth orbit CFTP 

will experience only one to two upsets per day. 
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VIII. PRACTICAL RPR IMPLEMENTATION ISSUES 

A. OVERVIEW 
This chapter addresses some practical concerns about applying RPR to real-world 

problems.  Building on the discussion from Chapter II, the first section addresses whether 

a particular algorithm can be converted into approximated versions to provide the upper 

and lower bounds calculations for the RPR architecture.  The discussion focuses on the 

practical aspects of creating useful and accurate error bounds calculations.  The second 

part of the chapter presents a real-world application to demonstrate the appropriate use of 

RPR.  An image compression algorithm provides a case study to investigate the effect of 

inexact results in an RPR system due to SEUs.  This section describes a methodology to 

estimate such effects and improve the system design process.  As the case study 

demonstrates, it is quite acceptable in many applications to occasionally produce lower 

precision results, especially considering the power and area savings of RPR over a TMR 

approach. 

 

B. WORKING WITH UPPER AND LOWER BOUNDS ESTIMATES 
Chapter II acknowledges that although many applications and algorithms are 

amenable to the RPR approach, some are not.  Computational problems are classified as 

either Class A or Class B depending on whether RPR is an appropriate method of gaining 

fault tolerance.  Figure 2.12 describes the steps for determining if a problem is Class A or 

B.  Step 3 of this process asks whether approximate solutions can be formulated.  Chapter 

II approaches this question by considering how functions affect the relationships between 

input and output “clusters.”  This chapter takes a more practical approach to explore how 

typical numerical functions can be approximated and implemented in FPGAs. 

 

1. Properties of Numerical Functions Amenable to Approximation 

A function must meet several conditions in order to apply the approximation 

techniques described below.  First, the function must be well-behaved.  That is to say that 

it is single-valued, continuous over the (possibly restricted) domain of input values, and 
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has a continuous first derivative.  A common function that violates the single-valued 

restriction is the square root.  If both positive and negative solutions are permissible, two 

equally correct solutions are possible.  Thus, depending on the calculation method(s), 

there may be ambiguity when developing approximations to compare against full-

precision solutions.  For example, a Newton-Raphson method, which converges towards 

a final answer over a series of iterations, might produce positive or negative solutions 

depending on the initial guess and computational precision.  The sign function, defined as 

+1 for inputs greater than 0 and as –1 for inputs less than 0, and the step function are 

other common functions that do not meet the criteria of well-behaved.  Due to 

discontinuity at the origin, they may evaluate to different solutions depending on 

numerical precision and rounding. 

A second, and more restrictive, condition that is relaxed in subsequent sections is 

that the function should be monotonically increasing or decreasing.  This ensures 

consistency with regard to the method of calculating the upper and lower bounds.  Figure 

8.1 shows how the relationship between the precise solution and the high/low estimates 

changes depending on whether the function has a positive or negative slope.  In regions 

with a positive slope, the lower bound can be calculated based on a rounded-down 

version of the precise input value.  In regions with negative slope, processing this 

rounded-down input value yields an upper bound. 

 

Precise

Low

High

Precise

High

 
Figure 8.1 Upper/Lower Bounds for Sine Function 

 



157 

For periodic functions, such as the sine function in Figure 8.1, one can define a 

restricted range of allowable input values over which the function is constantly increasing 

or constantly decreasing.  Values outside this range could be “mapped” into this range 

through appropriate shifting by some multiple and/or fraction of the period.  For the sine 

function, this involves addition/subtraction by integral numbers of π.  For aperiodic non-

monotonic functions, one needs to either restrict input values to a monotonic region of 

the function or incorporate special techniques for dealing with regions where the slope 

changes sign, as discussed below. 

It is important to maintain a consistent convention for calculating the lower/upper 

bounds and comparing them with the precise solution.  The voter in an RPR architecture 

requires an upper bound that is always greater than or equal to the precise solution.  

Likewise, the voter’s lower bound input must be less than or equal to the precise solution 

for all input values.  Otherwise numerical comparisons made by the voter will be non-

deterministic and the design will be greatly complicated. 

Ensuring the proper relationship between the precise, upper, and lower solutions 

is especially challenging near stationary points, where the function’s slope changes from 

positive to negative, or vice versa.  The following section discusses different techniques 

for calculating the upper/lower bounds using an abbreviated version of the precise input 

value.  One common method is to calculate the lower bound from a rounded down input 

value and calculate the upper bound from a rounded up input.  A simple voting 

convention assumes that the output computed from the smaller input value is the lower 

bound and the output from the larger input value is the upper bound. 

Figure 8.2 shows the difficulty with this approach when the input value is near a 

stationary point, which is marked by the green arrow.  The left frame of the figure shows 

the desired situation, with the upper and lower values properly bounding the precise 

solution.  The right frame shows what happens after the function crosses the stationary 

point.  In this situation the “low” estimate is actually larger than the “high” estimate, 

since the function’s slope has changed from positive to negative.  This invalidates the 

voting mechanism, which requires the precise solution to be larger than the low estimate 

and smaller than the high estimate.  When the low and high input values straddle the 

stationary point, the situation can be complicated even more.  The center frame shows an 
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example where the precise input produces an output value larger than that calculated 

from either the low or high inputs.  Thus, even in a fault free condition, the voter detects 

an error since the precise solution does not fall within the bounds. 
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Figure 8.2 Upper/Lower Bounds in Vicinity of Stationary Points 
 

Also shown in the right two frames of Figure 8.2 are the proper error bounds 

(yellow double-headed arrows) surrounding the precise solutions.  In the middle frame, 

the output computed from the “high” input falls below the precise output value.  The 

proper upper bound must be equal to or greater than the maximum possible precise output 

value over the low-to-high range.  In the right frame, the upper and lower bounds 

surround the precise value, but their relationship to the “low” and “high” inputs are 

swapped relative to the left frame.  A voter designed to work with upper/lower bounds 

following the convention of the left frame (low input lower bound and high 

input upper bound) would not properly resolve the situation shown on the right. 

 

2. Lookup Tables versus Direct Calculation 
Some of the problems described in the previous section regarding non-monotonic 

functions can be alleviated by calculating the upper/lower bounds with lookup tables.  In 

fact, in many cases a lookup table approach is preferred.  Assuming the precision 

required for the approximate solutions is reasonable, lookup tables are relatively small  
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and more power efficient than methods that perform mathematical calculations.  Lookup 

tables are easy to implement in modern FPGAs and can be customized to any particular 

function. 

The general architecture for calculating upper and lower bounds in parallel with a 

precise solution is shown in Figure 8.3.  The input vector is divided into two sections.  

The most significant (leftmost) bits are supplied to all three functional blocks while the 

least significant bits are supplied only to the precise calculation.  Though the variables m 

and n will vary between applications, the values 8 and 24 are used here to correspond 

with the 32-bit full-precision and 8-bit approximate CORDIC calculations used elsewhere 

in this dissertation. 

 

 

Figure 8.3 Architecture for Calculating Precise and Upper/Lower Bounds Solutions 
 

A fundamental premise leading to the layout shown in the figure is that, for 

monotonic functions, the precise solution can be bounded by independent calculations 

using values that bound the precise input number.  Note in the figure that the “low” and 

“high” estimates may use different versions of the input vector MSB block.  The input to 

flow(x) is essentially a truncated version of the precise input value.  For standard binary 

number systems (unsigned, two’s complement, one’s complement, etc.), truncation 

represents a rounding down of the input.  The optional block g(x) often simply 

m=8 n=24Input m+n=32 

fprecise(x) 

flow(x) 

h(y) g(x) 

fhigh(x) 

32 

8 

8 

Precise 
Result 

Low 
Estimate 

High 
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increments the input (though it may be necessary to check for overflow conditions or 

other special cases).  Alternatively, this block can be eliminated if the function fhigh(x) is 

designed to operate directly on the truncated input values.  A lookup table for fhigh(x), for 

example,  can be programmed to accept the truncated values, making g(x)unnecessary. 

The three main functional blocks shown in the figure can be completely unique 

solutions to the numerical function being solved.  For example, if the numerical function 

is addition, the precise solution might involve a fast carry look-ahead structure while the 

approximate modules may use a simpler ripple-carry approach.  The RPR circuits in this 

dissertation compute sine and cosine using the CORDIC method for the precise solution 

and lookup tables for the upper/lower bounds. 

The outputs from the low and high estimates are shown as m-bit values, 

corresponding to the precision that can normally be achieved given an m-bit input.  

However, in some situations these outputs can be expressed more precisely.  For 

example, lookup tables can provide arbitrarily high precision outputs by generating 

values through high-resolution offline computations.  This is useful for maintaining tight 

error bounds, especially in regions where the function has a small slope. 

In some cases, it is possible to replace the block fhigh(x) with a simpler conversion 

of the low estimate.  The operation h(y) applies prior knowledge of the expected 

relationship between the low and high estimates to convert the output from flow(x).  For 

example, the high estimate can be calculated by adding the maximum difference between 

low/high bounds to the low estimate.  In this way the operations g(x) and fhigh(x) can be 

replaced with a simple adder in h(y).  A drawback to this approach is that it reduces SEU 

fault tolerance since faults in the flow(x) block lead to inaccurate estimates of both the 

lower and upper bounds.  However, the function h(y) can be useful in conjunction with 

separate flow(x) and fhigh(x) blocks by verifying that their results are properly spaced. 

Although lookup tables are easy to use, care must be taken to ensure they 

correctly represent the upper and lower bounds of the function throughout the entire input 

space.  To generate the contents of the lower bound lookup table, the full precision 

solution for all 2m possible truncated input values must be calculated.  Assuming the 

function has a positive slope, these high-precision solutions computed can then be 

truncated (i.e., rounded down) to yield the lower bound values.  There are several options 
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for creating the upper bound lookup table.  First, if the “preprocessor” g(x) is used, the 

same lookup table can be used for both the low and high estimates.  However, this is only 

guaranteed to give reliable bounds for monotonic functions, as highlighted in Figure 8.2.  

Second, each m-bit truncated input can be incremented by one and used to calculate a 

high-precision solution, which can then be rounded up.  Unfortunately, this method can 

also fail near stationary points.  Third, prior knowledge about the maximum gradient of 

the function can be used to properly offset the two lookup tables.  For example, since the 

sine function has a maximum slope of +1, the low and high estimates should differ by 

only a single bit in their least significant digit.  Finally, in regions of negative slope, the 

upper and lower bound lookup table values should be swapped. 

Even with lookup tables, great care must be taken near stationary points.  If the 

rounded up and rounded down versions of the precise input value straddle a stationary 

point, the function should be evaluated at both points.  If the function’s second derivative 

is negative (i.e., local maximum), the lesser of these two solutions should be assigned as 

the low estimate.  In this case the high estimate can be computed by adding the function’s 

maximum slope value to the low estimate.  On the other hand, if the function’s second 

derivative is positive (i.e., local minimum), the greater of the two solutions becomes the 

high estimate and the low estimate is computed by subtracting the maximum slope value. 

Continuing with the sine function example, Figure 8.4 shows three sample points 

along the curve.  The left and right frames show the local min/max at –π/2 and +π/2, and 

the middle frame shows the function at -π/8.  In this figure, the points on the horizontal 

axis are determined with 32-bit and 8-bit precision for the precise and low/high inputs, 

respectively.  Note that the low/high inputs in the left and right frames straddle the 

stationary points.  Again, yellow block arrows indicate the desired proper error bounds.  

In this case, the proper error bounds always span the same vertical distance since the 

upper/lower bounds should differ by just one digit in the LSB position of the 8-bit 

estimates (recall that the sine function’s maximum slope is 1). 
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Figure 8.4 Approximating Sine Function at Three Sample Points 
 

Table 8.1 presents an initial attempt at generating entries for the low/high estimate 

lookup tables.  The decimal values correspond to the data points shown in Figure 8.4 

above, whereas the hexadecimal numbers show the binary equivalent of each value 

rounded to the appropriate precision (following the two’s complement number system 

defined in Table 8.2 below).  As the figure demonstrates, there is some confusion in the 

left and right frames since the precise solution falls outside the bounds set by the rounded 

input values.  Likewise, the table shows trouble near ±π/2 since the 8-bit truncated output 

values allow no tolerance for the precise solution. 

 

x  Input Output 
Precise -1.570796327 0x9B7812AF -1.000000000 0xC0000000

Low -1.578125 0x9B -0.999973 0xC0 -π/2 
High -1.562500 0x9C -0.999966 0xC0 

Precise -0.392699081 0xE6DE04AC -0.382683432 0xE7821B5A

Low -0.406250 0xE6 -0.395167 0xE6 -π/8 
High -0.390625 0xE7 -0.380766 0xE7 

Precise 1.570796327 0x6487ED51 1.000000000 0x40000000

Low 1.562500 0x64 0.999966 0x3F +π/2 
High 1.578125 0x65 0.999973 0x3F 

 
Table 8.1 Initial Attempt at Generating Lookup Tables for Sine Function Approximation 
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Bit# 31 30 29 28 27 26 25 24 … 1 0 
Precise 

Value -21 20 2-1 2-2 2-3 2-4 2-5 2-6 … 2-29 2-30 

             

Bit# 7 6 5 4 3 2 1 0    
Estimates 

Value -21 20 2-1 2-2 2-3 2-4 2-5 2-6    

 

Table 8.2 Fixed-Point Two’s Complement Number Formats for Example in Figure 8.4 
 

The steps outlined earlier in this section aid in resolving these problems.  The 

second derivative is positive near -π/2, so the procedure says to take the larger value as 

the high estimate (0xC0) and subtract one to get the low estimate (0xBF).  There is no 

problem near -π/8, so those lookup table entries are unchanged.  Near π/2 the second 

derivate is negative, therefore the smaller value is assigned to the low estimate (0x3F) 

and the high estimate is incremented from that value (0x40).  Note that in all three cases 

the precise solution is within the error bounds defined by these low and high estimates.  

In fact, because the sine function has a maximum slope of 1, the 8 MSBs of the precise 

solution will match either the low or high estimate for every input value.  Also note that 

the block g(x) is not needed because the low and high estimate lookup tables can be 

indexed using only the 8 MSBs of the precise input value. 

 

x  Input Output 
Precise 0x9B7812AF 0xC0000000 

Low 0x9B 0xBF -π/2 
High 0x9C 0xC0 

Precise 0xE6DE04AC 0xE7821B5A 

Low 0xE6 0xE6 -π/8 
High 0xE7 0xE7 

Precise 0x6487ED51 0x40000000 

Low 0x64 0x3F +π/2 
High 0x65 0x40 

 
Table 8.3 Improved Lookup Table Entries for Sine Function Approximation 

 

3. Improved Method for Generating Lookup Table Estimate Values 

The preceding sections highlighted some of the challenges of developing 

approximate solutions to numerical functions and showed how lookup tables can 
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overcome some of these challenges.  This process can be made even more robust using 

the procedure described below to generate the lookup table contents.  Through this 

method, lookup table approximations can be applied to a broader class of functions, 

thereby eliminating some of the restrictions imposed earlier in this chapter. 

The basic concept for this alternative approach is that the off-line calculations 

generating the lookup table contents can incorporate maximum/minimum detection over 

the entire input range between “low” and “high.”  Instead of calculating the function at 

only the “low” and “high” rounded input points, the function is evaluated at every point 

in between that could be input to the precise module in Figure 8.3.  Referring to Figure 

8.3, there are 2n of these intermediate input values for each m-bit truncated input value.  

As these points are evaluated starting at the low input value and moving towards the high 

input, max/min variables are stored and updated as appropriate.  Once the high input 

value is reached, the minimum output is rounded-down (truncated) and the maximum 

output is rounded-up.  These values are stored in the low and high lookup tables, 

respectively.  No matter where in this range the precise input value actually exists, the 

upper/lower estimates will properly bound the precise output. 

This concept is shown in Figure 8.5 below, where the low and high inputs differ 

by one bit in their LSB position and the intervening points are spaced according to the 

bit-length of the precise input vector.  For this hypothetical function, neither the low nor 

high input values yield useful error bounds.  The horizontal red lines mark the maximum 

and minimum values of the function over the range low to high, thus these extrema 

should be entered into the low and high lookup tables. 
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Figure 8.5 Generating Lookup Table Error Bounds for Arbitrary Functions 

 

This approach requires no assumption about the type of function being evaluated 

and can easily handle discontinuities and stationary points.  One simply computes each of 

the 2n unique input values for each m-bit MSB sequence and records the max/min values.  

These max/min values are then rounded up and down before being entered into the high 

and low estimate lookup tables.  However, the computation time required to calculate and 

compare 2n inputs for all 2m lookup table entries can be burdensome.  For example, using 

MATLAB (running on a 1.86 GHz Pentium machine) to compute every sine function 

result when m+n = 24 bits, takes roughly 12 seconds.  It would take over 50 minutes to 

do these calculations when m+n = 32 bits.  Nonetheless, the upper/lower lookup tables 

only need to be generated once for a particular combination of m and n precision levels.  

Thus, when practical, the procedure described above is perhaps the most effective way of 

creating the RPR error bounds lookup tables. 

 

4. Designing a Voter to Compare Precise and Approximate Calculations 
Although the notion of checking whether a high-precision solution is within 

particular error bounds seems intuitive, implementing this error check in computer 

hardware requires careful design.  In particular, for FPGA designs it is possible for any 

component in the circuit to suffer SEUs.  An important aspect of RPR designs is that the 



166 

physically-larger precise-computation module is more likely to be affected by SEUs than 

the smaller redundant modules.  Nonetheless, the error bounds are susceptible to faults.  

Figure 8.6 shows various fault conditions in an RPR circuit, assuming that only one 

module can be faulty at any given time. 

 

 

Figure 8.6 Possible Error Conditions in RPR 
 

In the fault-free situation (a), the voter finds the exact solution is within the error 

bounds and forwards this result to the output.  When the exact solution is faulty and falls 

outside the bounds (b), a logical option is for the voter to output the midpoint between the 

lower and upper bounds.  Some faults to the upper/lower bounds cause data errors, while 

others may go undetected.  The left diagrams for situations (c) and (d) show cases where 

the fault is transparent to the voter, since the exact solution falls within the bounds.  

However, the right diagrams for (c) and (d) show situations the voter will detect.  

However, when the upper and lower bounds are incorrect relative to each other, the voter 

assumes a single fault has upset the error bounds and outputs the exact solution.  Figure 

8.7 presents pseudo-code describing the voter behavior in an RPR design.  Again, it is 
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important to point out that this voting methodology assumes there is never more than one 

faulty module in the circuit. 

 

 
Figure 8.7 Pseudo-code for RPR Voter 

 

This voting procedure is simplified further if the function has a maximum slope of 

one.  In this case, the upper and lower bounds always differ by the equivalent of one bit 

in the least significant digit.  This is because the inputs to the low/high modules differ 

numerically by the value of one in their LSB position, as mentioned in the previous 

section.  For the exact solution to fall within the error bounds, its most significant bits 

must correspond to the bits in either the upper or lower bound.  Thus the voter only needs 

to check whether the MSBs of the exact solution equal either the lower or upper bound. 

 

C. CONSEQUENCES OF IMPRECISION 
Though system engineers generally desire maximum possible precision in 

mathematical computations, compromises must be made between the costs and benefits 

of high precision.  In many applications, lower precision calculations act like a source of 

noise, causing a degradation in quality similar to sensor noise, environmental 

disturbances, and other noise sources.  Most systems can tolerate a limited amount and/or 

duration of noise.  Those that cannot are generally not robust enough to use in real-world 

applications.  This section demonstrates that occasional lower precision results caused by 

radiation-induced SEUs in an RPR system are nearly undetectable in certain applications.  

Image processing serves as an example of a useful function in which RPR and the 

CORDIC algorithm can be used effectively.  In this application, RPR is superior to 

alternatives such as TMR or an SEU-intolerant design. 

 

if ( exact(MSB) >= lower ) and ( exact(MSB) <= upper ) 
output = exact 

else if ( upper <= lower ) 
output = exact 

else 
output = lower(MSB) + 1/2 (upper-lower) 

end 
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1. Scenario Description 

The scenario investigated here is an extension of the satellite image processing 

example presented in Chapter IV.  The engineer’s task is to build an image compression 

circuit in order to minimize downlink bandwidth consumption.  FPGAs are well-suited 

for this task for several reasons.  In addition to being significantly less expensive than 

custom ASIC chips, they are readily available and can be quickly integrated into the 

spacecraft system.  Furthermore, the ability to load different circuit configurations in real-

time will enable dynamic optimization of the image compression algorithm. 

The image compression processor is tasked with reducing the number of bits-per-

pixel necessary to reconstruct single frame images collected by an onboard camera.  The 

camera is a 512x512 pixel panchromatic imager operating at a nominal 1 Hz frame rate.  

Each pixel’s gray scale intensity level is represented with 16-bits of dynamic range.  In 

order to support continuous image collection and transmission, the image compressor 

must process over 262,000 pixels per second (or 3.81 micro-sec per pixel).  These data 

rates are easily supported by current FPGA technology, which can operate at clock 

speeds over 100 MHz. 

However, there is concern about the SEU tolerance of FPGAs since their 

configuration logic is susceptible to radiation-induced upset.  Therefore, the engineer 

must develop a fault-tolerant design while minimizing the area and power consumption.  

There are three main goals for fault tolerance in this situation.  First is the detection of 

errors.  Without some mechanism for detecting errors, SEUs can cause the satellite to 

transmit corrupted imagery indefinitely.  By including error detection on the spacecraft, 

the system can either automatically take corrective action or notify operators on the 

ground so they can initiate recovery efforts.  Second, in conjunction with error detection 

it is desirable for the system to perform some error correction until corrective measures 

can successfully remove any SEUs.  This ensures that the satellite continues to provide 

images of satisfactory quality even when SEUs affect the circuit.  Finally, there must be 

some means of fault correction, which for FPGAs involves rewriting the configuration 

memory contents.  Error detection accelerates the fault correction step by identifying the 

region(s) affected by SEUs and focusing recovery efforts toward those components.  All 

three of these goals are supported by the RPR approach. 
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2. Image Compression with Discrete Cosine Transform 
One of the most common data compression techniques involves the discrete 

cosine transform (DCT).  It has been widely used in image and video compression 

applications [104] for reducing bandwidth consumption in transmission and minimizing 

data storage requirements.  DCT is one of the methods used in the well-known JPEG and 

MPEG standards [25], [63].  Many satellites, both government and commercial, perform 

image collection and dissemination.  Thus there is significant practical interest in 

examining the reliability and performance of a DCT algorithm for space applications. 

The DCT has been successfully implemented in VLSI, PLD and FPGA hardware 

technologies [104], [105], [106].  Several architectures have been proposed in which 

CORDIC processing elements are used to calculate the DCT [92], [93], [107].  By 

appropriately setting the x, y, and z inputs, the CORDIC algorithm can perform 

multiplication in conjunction with calculating sine and cosine functions.  Using this 

approach, CORDIC is a particularly efficient method of computing the DCT. 

Finally, it is important to recognize that digital systems are incapable of 

representing real numbers with absolute precision [63].  Thus the DCT, which operates 

upon real numbers, is well-suited to various approximation techniques, and RPR is an 

appropriate method of achieving fault tolerance for DCT designs. 

 

a. Background 
The DCT, related to the discrete Fourier transform, was first developed in 

1974 by Ahmed, Natarajan, and Rao [108].  It’s original formulation applies to one-

dimensional signals, but can be extended to the two-dimensional case.  The basic 

formulas describing the two-dimensional forward (Guv) and inverse (gmn) DCT, assuming 

an original signal matrix of size MxN, are given in Equation 8.1 [104]. 

 

 



170 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∑ ∑ ⎥⎦

⎤
⎢⎣
⎡ +

⎥⎦
⎤

⎢⎣
⎡ +

=

∑ ∑ ⎥⎦
⎤

⎢⎣
⎡ +

⎥⎦
⎤

⎢⎣
⎡ +

=

−

=

−

=

−

=

−

=

1

0

1

0

1

0

1

0

2
12cos

2
12cos2

2
12cos

2
12cos2

M

m

N

n
uvmn

M

m

N

n
mnuv

N
vn

M
umGvcuc

MN
g

N
vn

M
umg

MN
vcucG

ππ

ππ

 (8.1) 

where 
⎪⎩

⎪
⎨
⎧ ==

otherwise         1

0k if     
2

1
c(k)  

 
In principal, the DCT can be computed for an entire image in a single 

pass.  However, all practical implementations involve processing the image as a series of 

square subarrays, most commonly blocks of 8x8 pixels.  Studies have found that larger 

subarrays generally do not show better data compression performance, as the correlation 

among neighboring pixels is typically limited to small regions of the image [104].  Since 

the variables m, n, u, and v in Equation 8.1 can only take on integer values, the cosine 

terms can be precomputed and stored in lookup tables.  Smaller block sizes allow 

compact lookup tables for storing these constants and smaller memories for storing 

subarray elements during the computation. 

Figure 8.8 shows the 64 basis functions that comprise the DCT calculation 

for the 8x8 case.  Each sub-image corresponds to a single element of the transformed 

domain block.  If the transformed domain coefficients are specified with sufficient 

accuracy, any 8x8 block of pixels in the image domain can be reconstructed from some 

combination of these basis functions.  It is important to note that the DCT calculation 

does not by itself provide data compression.  Rather, compression is achieved through 

quantization and/or removal of components from the transformed domain.  Numerous 

quantization and data coding techniques, often involving adaptive algorithms, have 

evolved for compressing the transformed image representation with minimal distortion of 

the restored images [104].  For example, in many cases the coefficients corresponding to 

high spatial frequencies can be discarded with virtually no perceptible degradation in the 

image. 
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Figure 8.8 Basis Functions for 8x8 DCT 

 
b. Measuring Image Quality 

Assessing image quality is inherently subjective.  Rao notes that the 

human viewer “is the ultimate judge regarding the quality of the processed images.” 

[104]  Nonetheless, various quantitative measures are commonly used to assess image 

quality.  These metrics allow objective comparison of different image processing 

methods.  Furthermore, in applications such as medical diagnostics, images that “look 

good” to human observers may actually be inferior if they are processed in such a way 

that critical information is lost. 

Two of the most common image quality metrics used in the literature are 

mean squared error (MSE) and peak signal-to-noise ratio (PSNR).  These metrics are 

defined in Equation 8.2.  They both quantify how “noisy” a reconstructed (and possibly 

corrupted) image is compared to the original image. 
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c. MATLAB Testbed 
A MATLAB simulation testbed was developed to examine the quality of 

DCT-based image compression under various levels of numerical precision and error 

rates (see Appendix B).  The “signal processing” toolbox within MATLAB includes the 

DCT and inverse-DCT (IDCT) functions.  For the purposes of this testbed, however, it 

was necessary to implement the DCT operations directly rather than use the built-in 

functions.  This permitted manipulation of numerical precision over small regions of 

individual images and at specific places in the DCT computation sequence. 

For a satellite imaging application, only the forward DCT processing is 

performed on-board and therefore susceptible to errors.  Image reconstruction with the 

IDCT is performed on the ground and assumed to be error-free.  The DCT algorithm was 

modified to allow manipulation of the numerical precision and accuracy of the DCT 

coefficients.  Complete processor failure, as might occur in unprotected TMR or RPR 

voter circuitry, is modeled with a random number generator.  In this situation the 

coefficients produced by the circuit can take on any value between +/- N*(2B-1), where B 

is the number of bits per pixel and (2B-1) is the largest possible pixel intensity.  

Imprecision is modeled by discretizing and rounding properly calculated DCT 

coefficients. 

In addition, fault persistence was modeled by considering the time 

required for partial and/or full FPGA reconfiguration.  Data from the CFTP flight 

experiment hardware suggest full device reconfigurations take approximately 70 msec 

and single-frame partial reconfigurations require roughly 24 µsec.  These time durations 

were converted into the number of sequential pixels flowing through the processor until 

potential faults can be corrected.  For this scenario with a 512x512 pixel imager operating 

continuously at 1 Hz, 8 pixels are processed in the time it takes to refresh a single 

configuration frame on the FPGA and 18,000 pixels are processed during a full device 

reconfiguration.  In either case, if on-chip error detection is available, only a small 

portion of a single frame will be corrupted before the system is restored.  For larger 

images and/or faster frame rates, the throughput would necessarily be higher and more 

pixels would be corrupted before the device could recover from error-producing SEUs. 
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These fault models provide information regarding the potential 

consequences of SEUs in FPGA-based DCT processing.  However, they are not based on 

any particular design implementation.  More sophisticated fault and algorithm models can 

be easily integrated into this preliminary testbed to investigate the performance of 

specific designs.  When building circuits for real-world implementation, one could use 

the actual design architecture(s) to more precisely model the SEU response of the image 

processing system.  In addition, once the design matures enough for testing on real 

circuits, the SEU simulator from Chapter VI could be used in conjunction with the 

MATLAB testbed to improve these predictions. 

 

3. Effect of Imprecision on Image Quality 
This scenario was designed to determine whether imprecise computations from an 

SEU-affected RPR design cause noticeable and/or unacceptable results.  In addition, it 

illustrates the impact of SEUs that defeat a circuit’s fault tolerant capabilities (TMR, 

RPR, or otherwise).  A TMR design may have less frequent failures than an RPR version, 

but TMR failures have greater likelihood of causing gross miscalculations.  Furthermore, 

the TMR failures may persist for a longer duration since the larger circuit takes more 

time to reconfigure.  During the fault repair time, the processor will continue to provide 

erroneous results, degrading a larger region of the image. 

The first example examines what happens when circuit failure causes the 

calculation to produce random DCT coefficients.  Figure 8.9 shows the before and after 

images for such a fault persisting for 70 msec and affecting the calculation of over 18,000 

coefficients, or about 7% of the total pixels.  As expected, the image recreated upon 

inverse transforming these random coefficients is completely corrupted in the regions that 

were processed while the fault persisted.  For a system performing continuous 

configuration readbacks and/or scrubbing on the FPGA device, this example can be 

considered a worst case since 70 msec is the longest duration that an SEU would persist.  

For systems with less frequent readback/scrubbing or systems that don’t include on-board 

fault detection/correction, it is possible for SEU-induced faults to spoil entire images or 

sequences of images. 
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Original Image

 

Restored Image

 
 

Figure 8.9 “Baboon” Image with Temporary Failure of DCT Processor 
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The next example looks at the effect from imprecise coefficient calculations over 

the same 70 msec fault duration.  Again, roughly 7% of the pixels are affected.  In this 

case each DCT coefficient in the error zone is approximated by an 8-bit number, 

compared to the 32-bit representation of coefficients outside the error zone.  A sample 

run comparing the fault-free and faulty images is shown in Figure 8.11.  The corruption is 

virtually undetectable to the casual observer.  Figure 8.10 shows the difference between 

the two images, identifying a horizontal band of distortion in the upper portion of the 

image.  Careful examination of Figure 8.11 reveals some blurring, especially in the 

central region of trees.  This region is expanded in Figure 8.12.  Nonetheless, for most 

applications such minimal degradation is acceptable. 
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Figure 8.10 “Gold Hill” Difference Image 
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Original Image

 

Restored Image

 
 

Figure 8.11 “Gold Hill” Image with Temporary Imprecision in DCT Processor 
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Original Image

 

Restored Image

 
 

Figure 8.12 Detail of “Gold Hill” Image with Temporary Imprecision in DCT Processor 
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To further demonstrate the inherent robustness of this image processing scenario, 

the final example shows what would happen if an entire image was processed with 

reduced precision.  This would be useful information when determining the appropriate 

level of detail for the full precision modules in TMR and RPR structures.  Furthermore, 

various factors may cause SEU-induced imprecision in an RPR design to persist over 

more than the ~18,000 pixels assumed in the previous examples.  For example, if the 

camera system were to operate at standard video rates of 30 frames per second instead of 

the 1 Hz rate assumed in this scenario, 70 msec of error persistence would translate into 

550,000 pixels, or more than two entire images.  As Figure 8.13 shows, at this level of 

imprecision the image is beginning to appear somewhat “blocky,” although overall the 

degradation is slight.  Figure 8.14 shows a more detailed view, demonstrating the blurring 

that occurs when 32-bit coefficients are approximated by 8-bit values. 
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Original Image

 

Restored Image

 
 

Figure 8.13 “Lena” Image with Persistent Imprecision in DCT Processor 
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Original Image

 

Restored Image

 
 

Figure 8.14 Detail of “Lena” Image with Persistent Imprecision in DCT Processor 
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In addition to subjectively judging the preceding images, one can use the image 

quality metrics from Equation 8.2.  Table 8.4 lists the mean squared error and peak SNR 

metrics for the three examples described above.  The left column of data, labeled “Fault-

Free,” is created by performing a 32-bit DCT calculation, followed immediately by the 

IDCT operation.  The right column of data corresponds to the hypothetical fault 

conditions described for each example.  Although these mathematical metrics indicate 

considerable distortion between the fault-free and faulty images, only the “Baboon” 

example appears obviously corrupted to the average viewer.  Distortion in the two 

examples of imprecision are practically indistinguishable to human observers viewing 

these images through typical media (hardcopy and computer display). 

 

 Fault-Free Faulty 
 MSE PSNR MSE PSNR 

“Baboon” 3.52*10-13 172.7 dB 1,581 16.1 dB 
“Gold Hill” 3.54*10-13 172.6 dB 2.07 45.0 dB 

“Lena” 3.54*10-13 172.6 dB 26.7 33.9 dB 
 

Table 8.4 Image Metrics for Figure 8.9-Figure 8.13 
 

As this section demonstrates, RPR is a viable option for many image processing 

applications.  The simulation process developed above serves as a practical example of 

how one can investigate the performance of an RPR architecture in an SEU environment.  

By modeling a system and the potential faults that might affect it, one can better 

understand the consequences of particular fault-tolerant approaches.  The examples above 

were based on simple models of a DCT processor.  As a design matures, more detailed 

models can be developed to improve the accuracy of such studies.  Using this process 

even in the preliminary design stages allows one to make informed decisions about how 

best to achieve fault tolerance. 

 

4. Affect on Total Performance Metric (TPM) 
The previous section demonstrated that image processing tasks are often fairly 

robust in handling numerical imprecision.  It was shown both qualitatively and 



182 

quantitatively that the risk of imprecision due to an RPR architecture is minimal.  While 

Figure 8.9 showed that incorrect data can dramatically corrupt images, Figure 8.11-

Figure 8.14 showed that even significant loss of numerical precision (e.g., from 32-bit to 

8-bit precision) causes only slight distortion.  This information is vital to determining a 

system’s total performance metric (TPM). 

As described in Chapter IV, the TPM process is useful for guiding system 

development based on quantitative measures of cost and benefit factors, and scaling 

factors to relate these diverse metrics.  For the problems addressed in this dissertation, the 

TPM factors include size, speed, power, reliability, and precision.  The goal of TPM is to 

determine the optimal design solution that maximizes the function: 

 ∑−∑=−=
costs

j

benefits

i

N

j
jC

N

i
iB CKBKCostBenefitTPM  (8.3) 

The scaling factors K that appear in the equation above represent the relative 

importance of each cost and benefit term.  Based on the results from the previous section, 

it is clear that Kreliablitity should be larger than Kprecision, since failure of the image 

compression algorithm has much more severe consequences than reduced-precision data.  

This conclusion is, of course, scenario-dependent.  For applications such as video 

broadcasts of entertainment content or satellite imaging for broad-area land surveys, it is 

safe to assume that the precision factor is much less important than reliability.  On the 

other hand, applications such as astronomical imaging with the Hubble Space Telescope 

may be much less tolerant of images corrupted by imprecise data.  The following 

discussion addresses situations in which the precision is less important than reliability. 

Example 2 from Chapter IV considered the TPM for a notional satellite image 

processor.  The assumptions made about the reliability and precision terms in Chapter IV 

can be improved by using simulation tools such as those used in the previous section for 

demonstrating the effects of data errors and imprecision.  Figure 8.15 shows the behavior 

of these two TPM factors based on results from the previous section.  Referring to the 

right frame in the figure, note that there is minimal loss of “benefit” as precision is 

reduced from the design specification value of 16 bits to 10 bits.  Similarly, there is no 

benefit to increasing the precision above 16 bits.  There is, however, a critical point 

where the precision factor drops off quickly, since image reconstruction using extremely 
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coarse data is nearly the same as using incorrect data.  Experimentation with the images 

used earlier in this chapter, showed that this transition region occurs between 5 and 10 

bits.  At 5 bits of precision or lower, the images were almost indecipherable and therefore 

provide essentially no benefit.  On the other hand, at 10 bits of precision the image 

degradation was barely perceptible and certainly not significant for entertainment and 

similar purposes.  The circle on the graph marks the point where 11 bits of precision 

provides 95% of the maximum precision benefit value.  Sample images processed at this 

precision level yielded a peak SNR (PSNR) value of approximately 45 dB. 
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Figure 8.15 Benefit Value Functions for Reliability and Precision Factors 
 

The reliability term shown in the left frame exhibits a similar roll-off at lower 

reliability values and an plateau region for higher values.  The x-axis is measured by 

mean time between error (MTBE), where an error corrupts one entire image frame.  

Based on this definition of reliability, it is assumed that one or more bad images every 

minute is unacceptable, thus the benefit value for a one minute MTBE is zero.  

Considering a video entertainment application, one error every hour is presumably 

noticeable, but not catastrophic.  Therefore, this MTBE provides about half the desired 

reliability value.  At the upper extreme, an MTBE of two days or longer provides nearly 

the maximum reliability benefit.  MTBE can be converted into an average pixel error 

rate, and vice versa.  The example in Chapter IV describes a system with a 512x512 pixel 

camera that operates at 1 frame per second, or 86,400 frames per day.  To achieve the 

same PSNR level of 45 dB as discussed earlier, each 512x512 image must have only 14 
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pixel errors.  This translates into 4.6 bad images per day, or an MTBE of 5.2 hours.  This 

point is marked on the graph by a red circle. 

By combining the data in these two graphs, one can determine the proper ratio 

between Kreliablitity and Kprecision.  For this example, this can be accomplished by scaling the 

two functions such that the PSNR=45 dB points coincide.  Figure 8.16 shows this 

combined plot.  The intersection of these two curves occurs at Precision=11 bits and 

MTBE=5.2 hours.  From these curves it is determined that the asymptotic benefit value 

for reliability (MTBE) is 3.3 times that of precision.  Thus the K factors should be set 

such that Kreliablitity = 3.3×Kprecision. 
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Figure 8.16 Relationship Between Precision and Reliability TPM Factors 
 

Example 2 from Chapter IV also considered power, area, throughput and latency.  

Throughput was determined to be the single most important factor in that example, 

whereas power, area and latency were much less significant.  Therefore the next step in 
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the TPM process is to develop an analysis technique for relating throughput to reliability 

and/or precision.  One possible approach is to use surveys and controlled experiments of 

human viewer reactions to varying video rates (throughput) as compared to different 

levels of picture clarity (precision) and pixel or frame errors (reliability).  This would 

yield the TPM curve for throughput and would reveal the relative importance (K factors) 

among these three metrics.  Using the TPM curves and scaling factors for these three 

most important parameters allows one to determine an optimal solution that best 

combines speed, accuracy and reliability.  Similar analysis can be carried out for the other 

TPM factors applicable for a given application.  As size, power, latency or other 

parameters increase in importance, they can also be integrated into the TPM. 

This example highlights that both subjective and objective criteria are often 

needed to relate the various TPM factors.  For example, while mathematical image 

quality metrics such as PSNR are useful, determining the “annoyance threshold” for bad 

images during video entertainment broadcasts is very subjective.  Nonetheless, especially 

in image processing applications, these subjective measures are often more important 

from a system-level perspective.  TPM provides a simple way to integrate both 

qualitative and quantitative measurements of each design parameter.  Armed with the 

information generated by the TPM process, a system engineer can decide which design 

solution best achieves all of the design goals. 
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IX. CONCLUSION 

A. SUMMARY OF RESEARCH 
This research investigated methods of building and testing flexible, reliable and 

efficient spacecraft computer systems.  Recent advances in FPGA technology make these 

devices well-poised to become key components in future satellites that will likely require 

flexible high-performance computing systems.  Spacecraft computers must not only meet 

strict size, weight and power constraints, but also operate reliably in harsh radiation 

environments.  The major reliability concern addressed in this research is the effect of 

radiation-induced SEUs on FPGA circuits.  While traditional approaches to fault 

tolerance assume reliability is the preeminent concern, this research highlights the 

multitude of issues that a spacecraft engineer must address.  Specifically, power 

consumption is identified as a critical resource that must be carefully balanced against 

reliability goals when designing spacecraft computers. 

A major focus of this research was developing the RPR architecture as an 

efficient means of achieving fault tolerance for FPGAs.  RPR is an alternative to the more 

common TMR method that has long been used to protect systems against SEUs.  RPR’s 

primary advantages include reduced area requirements and power usage.  Certain 

computational problems, such as the primitive logic operations of AND, XOR, etc., 

cannot be formulated in terms of approximate calculations and are not amenable to RPR.  

These were labeled Class B problems, in contrast to Class A problems, which can be used 

in an RPR architecture.  Since most numerical functions and physical systems have some 

tolerance for imprecision and/or noise, RPR has broad applicability in real-world 

systems. 

The concept of a total performance metric (TPM) was introduced to evaluate the 

relative merit of RPR and other approaches such as TMR.  TPM takes into account the 

importance of various design parameters and aids the system engineer in determining the 

optimal solution to a given problem.  The methodology for developing this TPM can 

easily be tailored for use in various design scenarios.  The main concept in the TPM 

approach is that each design parameter can be expressed as either a cost or benefit 
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function and related to other parameters by means of simple scaling factors.  Several 

notional examples were developed in which power, fault tolerance, and other factors were 

integrated via TPM to identify the best solution.  Although the behavior and relationships 

among the TPM terms vary between applications, this methodology is a powerful tool for 

improving the system design process.  TPM factors related to image quality were 

examined in detail for a specific image processing algorithm to demonstrate the real-

world applications of TPM. 

Several CORDIC designs for calculating sine and cosine functions were used as 

test cases for detailed investigations of the SEU tolerance and power consumption in 

actual FPGA devices.  CORDIC was chosen as a good example of a moderately complex 

function fitting the description of a Class A algorithm appropriate for RPR.  The circuits 

were implemented on the Xilinx Virtex XQVR600 FPGAs contained in the CFTP 

experiment.  In addition, some CORDIC designs were used in radiation testing of a 

prototype Virtex-II board that included an XC2V6000 device. 

TMR and RPR versions of these CORDIC circuits were evaluated through SEU 

simulations at NPS and proton radiation testing conducted at UC Davis’ Crocker Nuclear 

Laboratory.  Although radiation testing did not provide comprehensive characterization 

of these two fault tolerant approaches, it yielded valuable data for validating the custom-

built CFTP SEU simulator.  In addition, radiation testing demonstrated that the SEU 

detection and correction techniques of the CFTP experiment were functional and ready 

for space flight.  Hundreds of SEUs were detected by the automatic FPGA configuration 

checking circuitry on the CFTP board.  The SEUs identified during several hours of 

radiation testing are equivalent to the number of SEUs expected in roughly one year of 

normal radiation conditions for the CFTP space experiment. 

The SEU simulator provided a means of comprehensively evaluating individual 

FPGA designs by exhaustively testing the SEU susceptibility of every configuration bit 

on the chip.  Extensive testing was conducted with TMR, RPR and unprotected CORDIC 

circuits.  The data demonstrated that the RPR approach provides fault tolerance 

comparable to that of TMR.  The RPR and TMR designs had residual SEU sensitivities 

of 0.45-1.94% and 0.34-0.89% probability of SEU-induced output data error, 
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respectively.  Overall, TMR was roughly twice as effective as RPR in preventing SEU-

induced data errors, which was expected due to TMR’s more comprehensive redundancy 

structure.  RPR was most effective in protecting the most significant bits in a circuit’s 

output, which for these test circuits were the 8 MSBs.  Errors in the 8 MSBs of the RPR 

circuits were about as likely as errors anywhere in the output data word of the TMR 

circuits.  Thus, RPR is an effective method of protecting against configuration bit SEUs. 

Power simulations were conducted to quantify the power savings of RPR 

compared to the TMR architecture.  Using commercial software tools (ModelSim and 

XPower) and established procedures, static and dynamic power consumption were 

determined for the same circuits used for SEU testing.  RPR required less than 5% more 

power than the unprotected circuits.  The TMR circuits used about twice as much power 

as the RPR circuits.  Therefore, RPR offers dramatic improvement in power usage over 

the traditional TMR approach.  Coupled with the SEU simulation data, this power data 

demonstrates that RPR is an effective and efficient fault tolerant method.  There is a 

trade-off between fault tolerance and power consumption, as expected.  For applications 

in which slight numerical inaccuracies are acceptable or power is a significant constraint, 

the RPR architecture is a superior choice. 

Finally, the dissertation concluded by examining RPR’s performance, in terms of 

data quality, when applied to an image compression algorithm.  The discrete cosine 

transform (DCT) used in many signal processing applications, such as the JPEG and 

MPEG standards, was implemented into a MATLAB testbed to demonstrate various SEU 

fault effects.  For this practical example, inexact solutions due to SEUs in an RPR design 

cause only minor degradation in image quality.  This demonstrates that in some 

applications occasional lower-precision results from RPR are quite acceptable, especially 

considering the power and area savings compared to TMR. 

 

B. ORIGINAL CONTRIBUTIONS 
The primary contribution of this dissertation is the development of RPR as a 

viable method of achieving fault tolerance in FPGAs.  Though similar in nature to error 

mitigation strategies used in other fields, this research is the first work applying such 
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methods to FPGA circuits.  It is a unique hardware fault-tolerant structure that applies 

concepts used in certain software designs.  RPR shares some features with the typical 

TMR fault tolerant approach, such as spatial redundancy and voting of output data 

values.  However, it differs fundamentally in that it recognizes that the individual output 

data bits from a numerical computation differ in importance.  RPR protects only the most 

important data bits by establishing upper and lower error bounds to guard against faults in 

the full-precision computation module.  This unique approach prevents numerically large 

data errors from propagating through the system. 

This research shows how the RPR architecture can be applied to real-world 

problems to reduce the cost of hardware fault tolerance.  RPR was implemented in FPGA 

circuits based on the well-known CORDIC algorithm.  These test circuits demonstrated 

the advantages of RPR in terms of size and power, as well as its effectiveness in fault 

mitigation.  Computational tasks were categorized as either Class A or Class B according 

to whether RPR might be appropriate in a given situation.  By following the process 

described in the flowchart of Figure 2.12, one can quickly assess whether a particular 

problem is a candidate for RPR.  Furthermore, it is important to stress that RPR is also 

quite suitable for non-FPGA systems.  Though the focus in this research was on FPGA-

based spacecraft computers, many of the concerns addressed here are equally valid for 

custom ASIC and other circuit technologies. 

The second contribution of this research is the development of a total performance 

metric (TPM) as a means of determining the best overall solution to a given problem 

based on numerous performance criteria.  TPM is a quantitative tool that integrates 

benefit factors (speed, reliability, etc.) and cost factors (power, size, etc.) into a single 

metric.  While these benefit/cost factors and their relative weightings must be customized 

for each individual situation, TPM enforces a structured process for quantifying factors 

important to a given design.  A key observation is that reliability should be considered as 

one of many possible important design considerations.  TPM is useful for comparing 

various fault-tolerant techniques since it accounts for the different strengths and 

weaknesses of each approach.  An essential feature of the TPM methodology is the 

flexibility that allows it to be adapted to most any design situation, not just fault-tolerant 

FPGA computing. 
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This dissertation’s third main contribution is the development of the CFTP SEU 

simulation system.  Building upon hardware and software tools developed at NPS for the 

CFTP program, a comprehensive method was created and validated for testing the SEU 

tolerance of FPGA circuit configurations.  The completion of this SEU simulator is a 

major contribution, as it allows comprehensive ground-based testing for predicting on-

orbit performance of CFTP experiments.  The simulator also provides a means of 

replicating and studying the effects of SEUs reported by the CFTP flight experiments, 

once the NPSat-1 and MidSTAR-1 satellites are launched in late-2006.  In addition, this 

SEU simulator enables detailed studies of the effectiveness of various fault-tolerant 

approaches, as demonstrated in this research. 

Although other institutions have built similar systems for simulating SEU effects 

on FPGAs [8], [99], [109], this simulator is unique because it uses an actual spaceflight 

hardware configuration.  The SEU simulators described elsewhere in the literature are 

based on custom setups not used directly in any space experiments.  Though working 

with the CFTP flight hardware presents some challenges, for example limited I/O 

interconnectivity, it offers several advantages.  First, the FPGA configuration files tested 

in the simulator are identical to those that can be run on CFTP during space operations.  

This provides the most accurate assessment of SEU sensitivities and allows ground-based 

verification of faults that are observed on-orbit for specific circuit configurations.  

Second, data from the simulator not only provides valuable reliability predictions, but 

also serves as excellent testing of the CFTP equipment’s readiness for space operations.  

Finally, the capability of artificially injecting faults into the CFTP hardware offers an 

alternative means of exercising fault-tolerant designs during space operations.  Since the 

expected SEU rates in the NPSat-1 and MidSTAR-1 orbits are quite low, it may be 

worthwhile to accelerate the CFTP experiments by using this fault injection tool. 

 

C. FUTURE WORK 
Part of the outcome from this research is recommending areas for further 

investigation.  Several of these topics are related to better understanding and mitigating 

SEU effects.  Additionally, some of the FPGA power consumption issues explored in this 

dissertation are good candidates for further exploration. 
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The first recommendation is to conduct more extensive radiation testing with the 

CFTP hardware.  The testing described in Chapter VII proved useful, especially in 

validating the SEU simulator.  However, additional testing could be used to investigate 

the surprisingly high SEU sensitivities discussed in Chapter VI.  Although the radiation 

testing and simulator data matched for nearly 200 unique SEUs, only two CORDIC 

circuits were tested in the radiation chamber.  It would useful to test the other circuits 

used in the simulator, as well as new TMR and RPR circuit designs that follow Xilinx’s 

recommended I/O and voter methods.  Additional testing should also include circuits that 

incorporate half-latch removal methods developed at LANL and BYU.  As their research 

has shown, this is important for avoiding undetectable SEU susceptibilities. 

Further radiation testing would also be useful for exploring the unexpected SEU 

polarity behavior found here.  As discussed in Chapter VII, it is possible that in the Virtex 

FPGA architecture SEUs are more likely to cause 1-to-0 configuration bit upsets, 

whereas the Virtex-II may be more susceptible to 0-to-1 transitions.  If these preliminary 

conclusions are confirmed, one might pursue methods of developing bitstreams with 

higher percentages of the less-susceptible bit polarity as a novel way of improving FPGA 

reliability. 

Another area for future work is analyzing data from on-orbit testing with CFTP 

experiments.  Once the NPSat-1 and MidSTAR-1 satellites are launched, the CFTP team 

will have access to valuable real-world SEU data.  This data should be used to verify 

results from radiation testing and the SEU simulator.  While it is expected that the 

spacecraft data will match ground testing, any differences found will be important for 

improving these predictive tools.  An additional tool that would enhance these SEU 

studies is a means of determining the precise circuit function of each configuration bit on 

the FPGA.  This information would enable detailed analysis of how individual SEUs 

cause logic errors to propagate through a circuit.  Other researchers have published 

results based on this type of analysis, but the actual bit-to-function mappings have not 

been published. 

With minor modifications, the SEU simulator built for this research could be used 

with the Virtex-II board that was used during part of the radiation testing.  This would be 
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useful for comparing radiation data from Nov 2005 and any future tests.  A Virtex-II SEU 

simulator would allow testing of larger and more complex circuits that might exceed the 

capacity of the baseline XQVR600 device on CFTP.  For example, the “PIX” circuit 

tested at UC Davis was built under the CFTP project as a distributed-TMR experiment, 

but its large size meant that it could only be used on the Virtex-II prototype board. 

Further theoretical work would be useful for building a stronger foundation for 

determining whether algorithms are Class A or Class B.  While this research focused 

specifically on numerical computations, it would be worthwhile to determine if and when 

RPR can be applied to functions without an obvious hierarchy of importance in output 

data bits.  Functions, such as Hamming distance comparators, that produce a single 

output bit may even be Class A if simplified approximate solutions can be developed, 

perhaps by ignoring portions of the input data.  One might also search for the most 

primitive Class A function.  Is the most basic reducible function a numerical operation, 

such as addition, or can other operations with even simpler input/output relationships be 

approximated? 

In this research, power estimates were made using only computer simulations.  

Future research might involve measuring power consumption on actual FPGA devices.  

Accurate power measurements could verify the conclusions stated here showing that RPR 

used only half as much power as TMR for the CORDIC circuits tested.  A major 

challenge of this approach is properly compensating for the power usage of ancillary 

components on the CFTP board.  Such work might also require modifications to the 

CFTP circuit board(s) and/or power supply setup.  Despite these challenges, power 

measurements would help validate the power simulation methods used in this research 

and improve future studies of power-efficient fault-tolerant designs. 

Finally, although RPR was shown to be significantly more power efficient than 

TMR, additional power-saving techniques could be explored.  Chapter III explains that in 

current FPGA technologies these techniques generally focus on the dynamic power 

equation.  The literature contains many unique approaches to reducing power.  Future 

work might involve applying some of these techniques to fault-tolerant designs.  For 
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example, as Chapter VI demonstrates, pipelined CORDIC circuits use substantially less 

power on a per-calculation basis than the iterative CORDIC implementations. 

 

D. CONCLUDING REMARKS 
This research has culminated in a set of tools for evaluating several important 

characteristics of FPGA-based spacecraft computing systems.  The automated SEU 

simulator enables exhaustive testing of a specific architecture’s fault tolerance, and hence 

reliability, even in the preliminary stages of system development.  Data from the SEU 

simulator can be integrated into modeling environments, such as the MATLAB testbed 

for the DCT image compression example, to provide visual and statistical evidence of 

how a system is likely to respond to SEU-induced faults within the FPGA circuits.  

Power estimates can be made using simulation software to assess the efficiency of 

various designs.  The TPM method of evaluation ties these tools together by considering 

all important characteristics of competing designs and weighing them appropriately for a 

given task.  The utility of this evaluation method extends well beyond the scope of the 

fault tolerance research conducted for this study. 

Through the methodologies mentioned above, this dissertation clearly 

demonstrates the utility of a reduced precision redundancy architecture for fault tolerance 

in FPGAs and other technologies.  Though much of this research focused on CORDIC 

test circuits, the RPR approach can easily be applied to many different FPGA and non-

FPGA circuits.  Many computational tasks for both orbital and terrestrial applications are 

amenable to “flexible precision.”  Flexible precision allows for area and power savings 

through the use of smaller, more efficient circuits.  RPR takes advantage of this 

efficiency while providing fault protection comparable to the standard TMR method. 
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APPENDIX A – CORDIC PROCESSOR DESIGN 

As discussed in Chapter V, a CORDIC processor was the primary test case for the 

fault-tolerant and power-saving techniques developed in this research.  Various 

implementations of a basic CORDIC trigonometric calculator were constructed to  

provide insight into the complex interactions between a circuit’s size, speed, complexity, 

feedback structure, power consumption and fault tolerance.  This appendix describes the 

design methodology for producing the circuits tested and analyzed in Chapters VI and 

VII. 

 

A. OVERVIEW 
The basic CORDIC circuit tested follows the iterative design presented in 

Parhami [30] and uses simple adder/subtracter and shifter elements.  Using the circular 

rotation mode, this circuit produces the sine and cosine of the input angle after 

performing a series of intermediate calculations.  The fundamental CORDIC equations 

from Chapter V are repeated here.  As explained in [30], initializing the registers with the 

values (0.60725, 0, <input angle>) configures the circuit for calculating cosine and sine. 
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The baseline design was a 32-bit processor.  A two’s complement fixed-point 

number system was established to accommodate the desired range of inputs [-π/2, π/2] 

and outputs [-1, 1].  For input angles outside this range, a pre-rotation operation could be 

added as in [34], though this was not implemented in this design.  Angles are represented 

in units of radians, though any convenient angular units could be chosen if the arctangent 

look-up table is modified appropriately.  Using radians simplified the interpretation of 

results. 
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The circuit’s inputs and outputs provide for 32-bit resolution, of which 30 bits are 

devoted to the fractional part.  This provides sine and cosine values accurate to within  

±2-31, or ±4.66*10-10.  The internal calculations are performed on 39-bit operands.  This 

wider internal datapath accounts for rounding/truncation errors.  In order to achieve n-bit 

precision in the output values, the authors in [34] state that the internal wordwidth must 

be (n + log n + 2), although they do not provide a derivation of this formula.  A 

derivation is found in [110], where an upper-bound error analysis was performed 

including both approximation and truncation errors.  As mentioned above, all numbers 

are represented in two’s complement notation and angle values are expressed in radians.  

The table below shows the fixed-point formats used for the baseline 32-bit CORDIC 

design. 

 

Bit # 31 30 29 28 27 … 1 0    Inputs & 
Outputs Value -21 20 2-1 2-2 2-3 … 2-29 2-30    

             

Bit # 38 37 36 35 34 … 8 7 … 1 0 
Internal 

Value -21 20 2-1 2-2 2-3 … 2-29 2-30 … 2-36 2-37 

 
Table A.1 Fixed-Point Two’s Complement Number Formats for 32-Bit CORDIC 

 

Kota’s derivation [110] defines numerical precision as the number of fractional 

bits (i.e., number of digits to the right of the binary point).  They account for the sign and 

20 bits in the term “+ 2” in the equation above.  Thus 37 bits are sufficient for 32-bit 

resolution.  This is supported by the simulation results in [94], where precision greater 

than 30 fractional bits can be achieved with 36 or 37 total bits when 33 iterations are 

performed.  Hu did not show results for a 32 iteration design as used here, but 

extrapolation from his tables indicates that 32 iterations are sufficient.  The 39-bit design 

detailed above is therefore over-designed for the desired accuracy.  However, since all of 

the radiation test data (see Chapter VII) was collected with the original 39-bit version, 

this internal datapath width was used for all 32-bit CORDIC circuits in this research. 
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B. DESIGN PROCESS 

1. Schematic Design Specification 

The designs used in the Aug and Nov 2005 radiation experiments were built using 

Xilinx ISE 6.2 and 6.3.  The majority of the design was created using the schematic entry 

tool ECS.  The ROM look-up tables were VHDL modules, while all other modules were 

specified schematically down to the individual logic element level (e.g., AND, OR, 

MUX, FF, etc.).  The top-level schematic file for the 32-bit CORDIC processor is shown 

in Figure A.1. 

 

 
Figure A.1 32-Bit CORDIC Processor Schematic 

 

This basic processor module was integrated into the overall FPGA design used on 

the CFTP board X2 experiment device.  For example, in the TMR experiments this 

module was triplicated within X2’s top-level VHDL code with simple component 

declarations.  The top-level code included a voter unit, a counter for automatically 

generating input values and several control signals.  As described in [103], the X1 device 
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provides control and interface for the experiments loaded onto X2.  The basic CORDIC 

processor was small enough to load a copy into the X1 design for synchronous error 

detection of the results produced by X2.  It should be noted that in this research TMR was 

applied only to the main data processing blocks.  This follows the approach taken in [85] 

in which “the ‘full TMR’ … does not triplicate the clock, reset and I/O signals.”  By 

contrast, the methods recommended by Xilinx [68] and other researchers [8], [88] involve 

separate clock and I/O signals for each of the three TMR computation modules.  

However, these more complete TMR methods are not always feasible due to I/O and 

clock network limitations.  For example, as discussed in Chapter VI, the CFTP board 

does not support I/O triplication of a 32-bit output vector. 

For the Aug 2005 experiments the design was instantiated onto the CFTP 

development board’s Xilinx Virtex XQVR600 FPGAs.  For the Nov 2005 experiments a 

few small modifications were made to the original design and the new version was tested 

on both CFTP development boards, using the Virtex XQVR600 and Virtex-II XC2V6000 

FPGAs.  The Xilinx ISE development tools, including the XST synthesis tool, were used 

throughout the process.  The only design constraints levied on the tools were the physical 

pin locations necessary to interface the circuit with the CFTP boards.  Otherwise, the 

tools automatically optimized the design to remove redundant logic and improve the 

circuit’s speed.  No attempt was made to avoid potential “half-latch” or “keeper circuit” 

problems, as identified in [7], [8].  This simplified the design flow, but allowed some 

potential for undiagnosable faults.  As pointed out in the literature, half-latches present a 

sizeable cross section in the Virtex devices.  However, recent investigations with the 

Virtex-II device family show fewer problems from half-latches. 

Once each circuit was thoroughly simulated and tested for functional correctness, 

a “golden” version of the fully placed-and-routed design was archived.  Changes to the 

circuit are manifested as changes to the configuration bitstream, therefore accurate 

analysis of faults requires exact knowledge of the circuit-to-bitstream mapping.  Since 

even the smallest design change can significantly change the placed-and-routed circuit, it 

was critical to not modify this golden design between radiation testing, fault injection 

simulations, and analysis.  One of the designs tested in Aug and Nov 2005 was a TMR 

version of the 32-bit CORDIC.  Figure A.2 below shows how the design from Aug 2005 
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was implemented on the Virtex device (image generated by Xilinx’s FPGA Editor 

software).  Though this design appears quite dense, it uses only 19% of the total slices on 

the chip. 

 

  
Figure A.2 Layout of TMR 32-Bit CORDIC on Virtex XQVR600 

 

2. VHDL Design Specification for Iterative CORDIC 
Following the Nov 2005 radiation tests, the design was translated into a VHDL 

representation.  This provided more flexibility and simplified the development process.  

For example, changing the number of bits of precision in the schematic design requires 

painstaking effort, but can be rapidly implemented in VHDL with only minor 

modifications.  Also, whereas the schematic design consisted of numerous files that had 

to interface correctly with one another, the VHDL design was built as a single file that 

could be easily ported between machines and software environments.  The code listed 

below is functionally equivalent to the 32-bit schematic design described earlier. 
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-- Josh Snodgrass 
-- 32-bit CORDIC processor 
-- Iterative design: 
--   32-bit precision 
--   39-bit internal word length = 32 + log2(32) + 2 
--   35 cycle latency = 3 start + 32 iterations (+ 2 done) 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.NUMERIC_STD.ALL; 
 
entity cordic32sin_cos_iter is 
 generic ( 
  precision  : integer := 32; 
  wordlength : integer := 39; 
  --size_diff  : integer := wordlength-precision; 
  size_diff  : integer := 7; 
  iter_max_cnt : integer := 31); 
 port ( 
  clok  : in std_logic; 
  start  : in std_logic; 
  z_in  : in std_logic_vector (precision-1 downto 0); 
  cos_out  : out std_logic_vector (precision-1 downto 0); 
  sin_out  : out std_logic_vector (precision-1 downto 0); 
  ang_out  : out std_logic_vector (precision-1 downto 0); 
  done  : out std_logic); 
end cordic32sin_cos_iter; 
 
architecture Behavioral of cordic32sin_cos_iter is 
 
 signal x_int  : signed (wordlength-1 downto 0); 
 signal y_int  : signed (wordlength-1 downto 0); 
 signal z_int  : signed (wordlength-1 downto 0); 
 signal cos_int  : signed (precision-1 downto 0); 
 signal sin_int  : signed (precision-1 downto 0); 
 signal ang_int  : signed (precision-1 downto 0); 
 signal state   : integer range 0 to 4 := 0; 
 signal iteration  : integer range 0 to iter_max_cnt; 
 
 CONSTANT x_init : signed (wordlength-1 downto 0) := x"26DD3B6A1" & "000";  -- 1/K 
 CONSTANT y_init : signed (wordlength-1 downto 0) := (others => '0'); 
 
 type mem_type is array (iter_max_cnt downto 0) of signed(wordlength-1 downto 0); 
 signal z_LUT  : mem_type; 
  
begin 
 
 cos_out <= std_logic_vector(cos_int); 
 sin_out <= std_logic_vector(sin_int); 
 ang_out <= std_logic_vector(ang_int); 
  
 z_LUT(0) <= "001100100100001111110110101010001000100"; 
 z_LUT(1) <= "000111011010110001100111000001010110000"; 
 z_LUT(2) <= "000011111010110110111010111111001001011"; 
 z_LUT(3) <= "000001111111010101101110101001101010101"; 
 z_LUT(4) <= "000000111111111010101011011101101110010"; 
 z_LUT(5) <= "000000011111111111010101010110111011101"; 
 z_LUT(6) <= "000000001111111111111010101010101101110"; 
 z_LUT(7) <= "000000000111111111111111010101010101011"; 
 z_LUT(8) <= "000000000011111111111111111010101010101"; 
 z_LUT(9) <= "000000000001111111111111111111010101010"; 
 z_LUT(10) <= "000000000000111111111111111111111010101"; 
 z_LUT(11) <= "000000000000011111111111111111111111010"; 
 z_LUT(12) <= "000000000000001111111111111111111111111"; 
 z_LUT(13) <= "000000000000000111111111111111111111111"; 
 z_LUT(14) <= "000000000000000011111111111111111111111"; 
 z_LUT(15) <= "000000000000000001111111111111111111111"; 
 z_LUT(16) <= "000000000000000000111111111111111111111"; 



201 

 z_LUT(17) <= "000000000000000000011111111111111111111"; 
 z_LUT(18) <= "000000000000000000001111111111111111111"; 
 z_LUT(19) <= "000000000000000000000111111111111111111"; 
 z_LUT(20) <= "000000000000000000000011111111111111111"; 
 z_LUT(21) <= "000000000000000000000001111111111111111"; 
 z_LUT(22) <= "000000000000000000000000111111111111111"; 
 z_LUT(23) <= "000000000000000000000000011111111111111"; 
 z_LUT(24) <= "000000000000000000000000001111111111111"; 
 z_LUT(25) <= "000000000000000000000000000111111111111"; 
 z_LUT(26) <= "000000000000000000000000000011111111111"; 
 z_LUT(27) <= "000000000000000000000000000010000000000"; 
 z_LUT(28) <= "000000000000000000000000000001000000000"; 
 z_LUT(29) <= "000000000000000000000000000000100000000"; 
 z_LUT(30) <= "000000000000000000000000000000010000000"; 
 z_LUT(31) <= "000000000000000000000000000000001000000"; 
 
 process (clok,start) begin  -- Control signals for state machine 
  if (start='1') then 
   state <= 1; 
  elsif (clok'event and clok='1') then 
   if (state = 0) then 
    state <= 0; 
   elsif (state=3) then 
    if (iteration=iter_max_cnt) then 
     state <= 4; 
    end if; 
   elsif (state=4) then 
    state <= 0; 
   else 
    state <= state + 1; 
   end if; 
  end if; 
 end process; 
  
 process (clok,start) begin  -- More control signals 
  if (start='1') then 
   iteration <= 0; 
   done <= '0'; 
  elsif (clok'event and clok='1') then 
   if (state=3) then 
    if (iteration=iter_max_cnt) then 
     iteration <= 0; 
     done <= '1'; 
    else 
     iteration <= iteration + 1; 
    end if; 
   end if; 
  end if; 
 end process; 
  
 process (clok) begin  -- CORDIC computation 
  if (clok'event and clok='1') then 
   if (state=2) then 
    x_int <= x_init; 
    y_int <= y_init; 
    z_int <= signed(z_in) & "0000000"; 
   elsif (state=3) then 
    if (z_int(wordlength-1)='0') then 
     x_int <= x_int - shift_right(y_int,iteration); 
     y_int <= y_int + shift_right(x_int,iteration); 
     z_int <= z_int - z_LUT(iteration); 
    else 
     x_int <= x_int + shift_right(y_int,iteration); 
     y_int <= y_int - shift_right(x_int,iteration); 
     z_int <= z_int + z_LUT(iteration); 
    end if; 
   end if; 
  end if; 
 end process; 
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 process (x_int,y_int,z_int) begin  -- Rounding of outputs from size "wordlength" to "precision" 
  if (x_int(size_diff-1) = '1') then 
   if (x_int(size_diff-2 downto 0) /= "000000") then  -- Round up 
    cos_int <= x_int(wordlength-1 downto size_diff) + 1; 
   elsif (x_int(size_diff) = '1') then  -- Round to nearest even 
    cos_int <= x_int(wordlength-1 downto size_diff) + 1; 
   else  -- No rounding 
    cos_int <= x_int(wordlength-1 downto size_diff); 
   end if; 
  else  -- No rounding 
   cos_int <= x_int(wordlength-1 downto wordlength-precision); 
  end if; 
 
  if (y_int(size_diff-1) = '1') then 
   if (y_int(size_diff-2 downto 0) /= "000000") then  -- Round up 
    sin_int <= y_int(wordlength-1 downto size_diff) + 1; 
   elsif (y_int(size_diff) = '1') then  -- Round to nearest even 
    sin_int <= y_int(wordlength-1 downto size_diff) + 1; 
   else  -- No rounding 
    sin_int <= y_int(wordlength-1 downto size_diff); 
   end if; 
  else  -- No rounding 
   sin_int <= y_int(wordlength-1 downto wordlength-precision); 
  end if; 
 
  if (z_int(size_diff-1) = '1') then 
   if (z_int(size_diff-2 downto 0) /= "000000") then  -- Round up 
    ang_int <= z_int(wordlength-1 downto size_diff) + 1; 
   elsif (z_int(size_diff) = '1') then  -- Round to nearest even 
    ang_int <= z_int(wordlength-1 downto size_diff) + 1; 
   else  -- No rounding 
    ang_int <= z_int(wordlength-1 downto size_diff); 
   end if; 
  else  -- No rounding 
   ang_int <= z_int(wordlength-1 downto wordlength-precision); 
  end if; 
 end process; 
 
end Behavioral; 
 

3. VHDL Design Specification for Pipelined CORDIC 
In addition, a pipelined version of the CORDIC was built as a VHDL design for 

power simulations in Chapter VI.  The code listed below provides 32 bits of precision 

with 32 clock cycles of latency, but throughput is dramatically improved since results are 

produced on every clock cycle.  Of course this gain in speed requires increased circuit 

area.  With this 32-bit design, the Xilinx ISE tools yield a circuit that occupies 2131 

slices (30% of total slices) on the XQVR600 part. 

 
-- Josh Snodgrass 
-- 32 bit CORDIC processor 
-- Pipeline design: 
--   32 bit precision 
--   39 bit internal word length = 32 + log_2(32) + 2 
--   32 cycle latency 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.NUMERIC_STD.ALL; 
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entity cordic32sin_cos_pipe is 
 generic ( 
  precision  : integer := 32; 
  wordlength : integer := 39; 
  --size_diff  : integer := wordlength-precision; 
  size_diff  : integer := 7); 
 port ( 
  clok  : in std_logic; 
  z_in  : in std_logic_vector (precision-1 downto 0); 
  cos_out  : out std_logic_vector (precision-1 downto 0); 
  sin_out  : out std_logic_vector (precision-1 downto 0); 
  ang_out  : out std_logic_vector (precision-1 downto 0)); 
end cordic32sin_cos_pipe; 
 
architecture Behavioral of cordic32sin_cos_pipe is 
 
 signal cos_int  : signed (precision-1 downto 0); 
 signal sin_int  : signed (precision-1 downto 0); 
 signal ang_int  : signed (precision-1 downto 0); 
 
 CONSTANT x_init  : signed (wordlength-1 downto 0) := x"26DD3B6A1" & "000";  -- 1/K 
 CONSTANT y_init  : signed (wordlength-1 downto 0) := (others => '0'); 
 
 type reg_type is array (0 to precision) of signed(wordlength-1 downto 0); 
 signal x_int  : reg_type; 
 signal y_int  : reg_type; 
 signal z_int  : reg_type; 
 
 type mem_type is array (0 to precision-1) of signed(wordlength-1 downto 0); 
 signal z_LUT  : mem_type; 
  
begin 
 
 cos_out <= std_logic_vector(cos_int); 
 sin_out <= std_logic_vector(sin_int); 
 ang_out <= std_logic_vector(ang_int); 
  
 z_LUT(0) <= "001100100100001111110110101010001000100"; 
 z_LUT(1) <= "000111011010110001100111000001010110000"; 
 z_LUT(2) <= "000011111010110110111010111111001001011"; 
 z_LUT(3) <= "000001111111010101101110101001101010101"; 
 z_LUT(4) <= "000000111111111010101011011101101110010"; 
 z_LUT(5) <= "000000011111111111010101010110111011101"; 
 z_LUT(6) <= "000000001111111111111010101010101101110"; 
 z_LUT(7) <= "000000000111111111111111010101010101011"; 
 z_LUT(8) <= "000000000011111111111111111010101010101"; 
 z_LUT(9) <= "000000000001111111111111111111010101010"; 
 z_LUT(10) <= "000000000000111111111111111111111010101"; 
 z_LUT(11) <= "000000000000011111111111111111111111010"; 
 z_LUT(12) <= "000000000000001111111111111111111111111"; 
 z_LUT(13) <= "000000000000000111111111111111111111111"; 
 z_LUT(14) <= "000000000000000011111111111111111111111"; 
 z_LUT(15) <= "000000000000000001111111111111111111111"; 
 z_LUT(16) <= "000000000000000000111111111111111111111"; 
 z_LUT(17) <= "000000000000000000011111111111111111111"; 
 z_LUT(18) <= "000000000000000000001111111111111111111"; 
 z_LUT(19) <= "000000000000000000000111111111111111111"; 
 z_LUT(20) <= "000000000000000000000011111111111111111"; 
 z_LUT(21) <= "000000000000000000000001111111111111111"; 
 z_LUT(22) <= "000000000000000000000000111111111111111"; 
 z_LUT(23) <= "000000000000000000000000011111111111111"; 
 z_LUT(24) <= "000000000000000000000000001111111111111"; 
 z_LUT(25) <= "000000000000000000000000000111111111111"; 
 z_LUT(26) <= "000000000000000000000000000011111111111"; 
 z_LUT(27) <= "000000000000000000000000000010000000000"; 
 z_LUT(28) <= "000000000000000000000000000001000000000"; 
 z_LUT(29) <= "000000000000000000000000000000100000000"; 
 z_LUT(30) <= "000000000000000000000000000000010000000"; 
 z_LUT(31) <= "000000000000000000000000000000001000000"; 
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 process (clok) begin  -- CORDIC computation 
  if (clok'event and clok='1') then 
   x_int(0) <= x_init; 
   y_int(0) <= y_init; 
   z_int(0) <= signed(z_in) & "0000000"; 
 
   for i in 0 to precision-1 loop 
    if (z_int(i)(wordlength-1)='0') then 
     x_int(i+1) <= x_int(i) - shift_right(y_int(i),i); 
     y_int(i+1) <= y_int(i) + shift_right(x_int(i),i); 
     z_int(i+1) <= z_int(i) - z_LUT(i); 
    else 
     x_int(i+1) <= x_int(i) + shift_right(y_int(i),i); 
     y_int(i+1) <= y_int(i) - shift_right(x_int(i),i); 
     z_int(i+1) <= z_int(i) + z_LUT(i); 
    end if; 
   end loop; 
  end if; 
 end process; 
 
 process (x_int(precision),y_int(precision),z_int(precision)) begin 
  -- Rounding of outputs from size "wordlength" to "precision" 
   
  if (x_int(precision)(size_diff-1) = '1') then 
   if (x_int(precision)(size_diff-2 downto 0) /= "000000") then  -- Round up 
    cos_int <= x_int(precision)(wordlength-1 downto size_diff) + 1; 
   elsif (x_int(precision)(size_diff) = '1') then  -- Round to nearest even 
    cos_int <= x_int(precision)(wordlength-1 downto size_diff) + 1; 
   else  -- No rounding 
    cos_int <= x_int(precision)(wordlength-1 downto size_diff); 
   end if; 
  else  -- No rounding 
   cos_int <= x_int(precision)(wordlength-1 downto wordlength-precision); 
  end if; 
 
  if (y_int(precision)(size_diff-1) = '1') then 
   if (y_int(precision)(size_diff-2 downto 0) /= "000000") then  -- Round up 
    sin_int <= y_int(precision)(wordlength-1 downto size_diff) + 1; 
   elsif (y_int(precision)(size_diff) = '1') then  -- Round to nearest even 
    sin_int <= y_int(precision)(wordlength-1 downto size_diff) + 1; 
   else  -- No rounding 
    sin_int <= y_int(precision)(wordlength-1 downto size_diff); 
   end if; 
  else  -- No rounding 
   sin_int <= y_int(precision)(wordlength-1 downto wordlength-precision); 
  end if; 
 
  if (z_int(precision)(size_diff-1) = '1') then 
   if (z_int(precision)(size_diff-2 downto 0) /= "000000") then  -- Round up 
    ang_int <= z_int(precision)(wordlength-1 downto size_diff) + 1; 
   elsif (z_int(precision)(size_diff) = '1') then  -- Round to nearest even 
    ang_int <= z_int(precision)(wordlength-1 downto size_diff) + 1; 
   else  -- No rounding 
    ang_int <= z_int(precision)(wordlength-1 downto size_diff); 
   end if; 
  else  -- No rounding 
   ang_int <= z_int(precision)(wordlength-1 downto wordlength-precision); 
  end if; 
 end process; 
 
end Behavioral; 
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C. SYNTHESIS TOOL VARIABILITY 

In addition to functional correctness, performance factors such as speed and area 

are important when compiling designs for actual FPGA implementation.  Such 

performance factors are strongly dependant on the exact design, but other issues related 

to the design synthesis environment also affect performance.  The tools that translate a 

schematic or VHDL design into an FPGA configuration file are extremely complicated.  

Several different commercial vendors offer competing toolsets.  Within a given vendor 

product line, there are typically several levels of design tools and various generations of 

software versions.  Moving between these different design environments can 

considerably influence the final placed-and-routed design.  Furthermore, there are a 

tremendous number of design optimization choices available within a particular design 

package.  Arriving at an optimal balance between speed, area, power, etc. is complicated 

by the numerous choices regarding software tools and optimization settings.  To achieve 

consistent and predictable designs requires careful management of the source files 

describing the design as well as following a repeatable design synthesis process. 

The CFTP team established Xilinx’s ISE (Integrated Software Environment) 

version 6.2i for LINUX as the baseline development environment.  This toolset includes 

XST (Xilinx Synthesis Tool), PAR (Place-And-Route) and other circuit mapping and 

miscellaneous programs.  The company Synplicity offers a competing package featuring 

their Synplify design synthesis software.  Synplify is widely used in industry and 

considered superior to XST.  Although it was not the intent of this research to produce 

highly optimized CORDIC circuits, it is interesting to compare the results from these 

competing software packages.  Table A.2 shows how well XST and Synplify compiled 

the CORDIC designs for several different levels of numerical precision. 
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Slice Count 
(% of chip) Max Delay [nsec] Design 

Method 

External / 
Internal 

Wordlength 
[bits] XST Synplify XST 

(ModelSim) Synplify 

Schematic 32 / 39 472 (6%) - 69 (40) - 

32 / 39 892 (12%) 373 (5%) 26 (30) 22 

16 / 20 265 (3%) 177 (2%) 20 (24) 20 
VHDL 

iterative 
8 / 11 124 (1%) 83 (1%) 16 (22) 16 

32 / 39 2131 (30%) 1931 (27%) 17 (26) 17 

16 / 20 554 (7%) 459 (6%) 12 (22) 13 
VHDL 

pipeline 
8 / 11 165 (2%) 136 (1%) 11 (20) 14 

 
Table A.2 CORDIC Circuit Sizes and Speeds on Virtex XQVR600 

 

In every case, Synplify yielded considerably smaller circuits with comparable 

delay to those produced by XST.  Circuit size should scale approximately linearly with 

wordlength.  For the iterative circuits a doubling in wordlength should cause a doubling 

in size.  This trend is followed in the Synplify data.  However, XST was particularly 

inefficient when compiling the “VHDL iterative: 32 / 39” design, using more than twice 

as many slices as Synplify for the same design.  Note that the functionally equivalent 32-

bit schematic design compiled through XST had slice usage much closer to the VHDL 

version via Synplify.  Furthermore, the XST versions of the 16-bit and 8-bit iterative 

circuits differ by a factor of two, so there was clearly some anomalous behavior in the 32-

bit iterative XST design.  For the pipeline circuits, a doubling in wordlength should cause 

a quadrupling in size.  Both XST and Synplify follow this trend fairly well. 

Also shown in the table are estimated timing delays for the placed and routed 

circuits.  High-fidelity circuit simulations, such as ModelSim, can provide more accurate 

timing estimates.  ModelSim was used to verify the timing estimates from the synthesis 

tools.  These tests were not exhaustive since testing all 232 possible input values would be 

prohibitively time-consuming.  However, several sample input values were run through 

each circuit so the delay between the clock edge and valid output data could be measured.  

Timing delays reported by the synthesis tools were consistently lower that the delays 

observed in the simulator.  One notable exception was the 32-bit schematic version.  Note 
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from the table above that the estimated delay for the schematic design is over twice that 

for the functionally equivalent VHDL version.  However, running several input values 

through the simulator yielded a maximum delay of only 40 nsec, compared to the 

estimated max delay of 69 nsec.  To better understand this discrepancy, a design was 

built that contained one copy of the schematic version and one copy of the VHDL 

version.  This design was run through the simulator and several dozen computation 

sequences were analyzed.  Surprisingly, the VHDL version had slightly larger delays for 

most of the input values analyzed, though its maximum delay was less.  This data 

demonstrates that one must be cautious when interpreting timing estimates and, in 

general, one should use more conservative (i.e., slower) clock speeds than indicated from 

the estimates. 
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APPENDIX B – MATLAB ERROR SIMULATION CODE 

This appendix contains the MATLAB code used in Chapters V and VIII for 

simulating faults in CORDIC and DCT calculations. 

 

A. CORDIC ERROR PROPAGATION CODE 

1. CORDIC Algorithm with Specific Forced Errors 
 
% Josh Snodgrass 
% CORDIC simulation for Chapter 5 
% 
% THIS VERSION INDUCES SPECIFIC ERRORS!!!!! 
% 
% Calculation of sine(z) and cosine(z) 
% 
% Current Limitations: 
% input range -pi <= z <= +pi 
 
clear all; close all; 
 
%Calculate K for m iterations 
m=8;  % input/output wordlength, with 2 bits for sign and 1's 
place 
n=(m-2)+ceil(log2(m-2));  % internal precision, # fractional bits 
K=1; 
for j=0:m-1 
  K=K*sqrt(1+2^(-2*j)); 
end 
 
xin=1/K; 
yin=0; 
zin=pi/6; % Input angle = 30 degrees 
ein=atan(2.^[0:-1:-(m-1)]); 
 
%Pre-rotation 
quadrant2=zin>pi/2; 
quadrant3=zin<-pi/2; 
if quadrant2 
  zin=zin-pi; 
elseif quadrant3 
  zin=zin+pi; 
end 
 
[tmp,x0]=dec2bin(xin,n); 
x0=[0 0 x0]; 
[tmp,y0]=dec2bin(yin,n); 
y0=[0 0 y0]; 
[z0w,z0v]=dec2bin(abs(zin),n); 
z0=[0 0 z0v]; 
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if z0w(length(z0w)) 
  z0(2)=1; 
end 
if zin<0; 
  z0=addbin2(~z0,zeros(size(z0)),1); 
end 
for i=1:length(ein) 
  [tmp,e(i,:)]=dec2bin(ein(i),n); 
end 
e=[zeros(size(e,1),2) e]; 
 
x(1,:)=x0; 
y(1,:)=y0; 
z(1,:)=z0; 
 
for i=1:m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Inject error in Y register during iteration 6 
%  if i==6 
%    y(i,4)=~y(i,4); 
%  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
  d(i)=~z(i,1); 
%  x(i+1)=x(i)-d(i)*y(i)/2^(i-1); 
  if y(i,1)==1 
    yshift=[ones(1,i-1) y(i,1:size(y,2)-(i-1))]; 
  else 
    yshift=[zeros(1,i-1) y(i,1:size(y,2)-(i-1))]; 
  end 
  if d(i) 
    yshift=comp2s(yshift); 
  end 
  x(i+1,:)=addbin2(x(i,:),yshift,0); 
 
%  y(i+1)=y(i)+d(i)*x(i)/2^(i-1); 
  if x(i,1)==1 
    xshift=[ones(1,i-1) x(i,1:size(x,2)-(i-1))]; 
  else 
    xshift=[zeros(1,i-1) x(i,1:size(x,2)-(i-1))]; 
  end 
  if ~d(i) 
    xshift=comp2s(xshift); 
  end 
  y(i+1,:)=addbin2(y(i,:),xshift,0); 
 
%  z(i+1)=z(i)-d(i)*e(i); 
  evalue=e(i,:); 
  if d(i) 
    evalue=comp2s(evalue); 
  end 
  z(i+1,:)=addbin2(z(i,:),evalue,0); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Inject error in stage 3 z-adder 
%  if i==3 
%    z(i+1,:)=addbin3(z(i,:),evalue,0); 
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%  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
end 
 
%Post-rotation 
if quadrant2|quadrant3 
  xfinal=comp2s(x(size(x,1),:)); 
  yfinal=comp2s(y(size(y,1),:)); 
else 
  xfinal=x(size(x,1),:); 
  yfinal=y(size(y,1),:); 
end 
 
%Display outputs 
if xfinal(1) 
  xout=comp2s(xfinal); 
  xout=-bin2dec(xout(2),xout(3:length(xout))); 
else 
  xout=bin2dec(xfinal(2),xfinal(3:length(xfinal))); 
end 
 
if yfinal(1) 
  yout=comp2s(yfinal); 
  yout=-bin2dec(yout(2),yout(3:length(yout))); 
else 
  yout=bin2dec(yfinal(2),yfinal(3:length(yfinal))); 
end 
 
zfinal=z(m+1,:); 
if zfinal(1) 
  zout=comp2s(zfinal); 
  zout=-bin2dec(zout(2),zout(3:length(zout))); 
else 
  zout=bin2dec(zfinal(2),zfinal(3:length(zfinal))); 
end 
 

 

2. Supporting MATLAB Code for CORDIC Calculations 

 
function sum = addbin3(x,y,cin) 
% Josh Snodgrass 
% Binary vector addition, ignore carry out 
% 
% Useful for 2's complement addition 
% Inputs "x" and "y" are vectors 
% Input "cin" is a scalar 
% 
% Input vector lengths for "x" and "y" must be equal 
% Resultant vector "sum" has length = length(x) 
% 
% THIS VERSION INDUCES AN ERROR IN CARRY LOGIC!!!!! 
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if nargin<3 
  disp('addbin3 accepts up to 3 inputs: x, y, cin'); 
end 
 
if length(x)~=length(y) 
  error('Input vectors must have same length'); 
end 
 
c=zeros(1,length(x)+1); 
if exist('cin') 
  c(length(c))=cin; 
end 
 
for i=length(x):-1:1 
  sum(i)=xor(xor(x(i),y(i)),c(i+1)); 
  c(i)=(x(i)&y(i))|(x(i)&c(i+1))|(y(i)&c(i+1)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Inject error into position #6 carry bit 
  if i==6 
    c(i)=~c(i); 
  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 
 
 
function [w,v] = dec2bin(x,n) 
% Josh Snodgrass 
% Conversion of decimal number to binary representation 
%  To see both whole and fractional parts of number, use 
% [w,v]=dec2bin(x,n) 
% 
% Current Limitations: 
% input x must be non-negative 
% output v set to n bits 
 
if x<0 
  error('Input value must be non-negative'); 
end 
 
xw=fix(x); 
xv=rem(x,1); 
 
w=0; 
i=1; 
while(xw>0) 
  w(i)=rem(xw,2); 
  xw=fix(xw/2); 
  i=i+1; 
end 
w=fliplr(w); 
 
i=1; 
while(i<=n) 
  v(i)=fix(xv*2); 
  xv=rem(xv*2,1); 
  i=i+1; 
end 
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if xv>=0.5 % round up 
    xtemp=[0 w v]; 
    xtemp=addbin2(xtemp,zeros(length(xtemp)),1); 
    w=xtemp(1:length(xtemp)-n); 
    v=xtemp(length(xtemp)-n+1:length(xtemp)); 
end 
 
 
function x = bin2dec(w,v) 
% Josh Snodgrass 
% Conversion of binary number to decimal representation 
%  To see both whole and fractional parts of number, use 
% x=bin2dec(w,v) 
% 
% Current Limitations: 
% input [w.v] must be non-negative 
 
x=0; 
 
xw=fix(x); 
xv=rem(x,1); 
 
for i=1:length(w) 
  x=x+w(length(w)-(i-1))*2^(i-1); 
end 
 
for i=1:length(v) 
  x=x+v(i)*2^(-1*i); 
end 
 
 
function w = comp2s(x) 
% Josh Snodgrass 
% Binary 2's complement --> first digit of w and x indicates sign 
% Does check for allowable range, since 2's complement 
% has larger range for negative numbers vs positive numbers 
%  
% Current limitations: 
% Assumes x is a row vector of binary values {0,1} 
 
if length(x)<2 
  error('Input binary vector must have at least 2 elements!'); 
end 
 
if x(1) & sum(x(2:length(x)))==0 
  error('Input binary vector is at max negative range, complement 
too big!'); 
end 
 
w=addbin2(~x,zeros(size(x)),1); 
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B. DCT ERROR SIMULATION CODE 

 
% Josh Snodgrass 
% 
% Error simulation code for DCT Algorithm 
 
clear all; close all; 
 
filename='goldhill.bmp'; filefrmt='bmp'; 
[g,cmap]=imread(filename,filefrmt); 
 
[M,N]=size(g); 
g=double(g); 
G=zeros(size(g)); 
Gfaultfree=zeros(size(g)); 
 
block=8; 
 
err_duration=18350/(block^2); 

% 70 msec reconfig * 512x512 pixels / 1 Hz 
%err_duration=8/(block^2); 

% 24 microsec partial * 512x512 pixels / 1 Hz 
err_start_x=floor((N/block)*rand); 
err_start_y=floor((M/block)*rand); 
err_stop_x=err_start_x-1+… 

ceil((err_duration+err_start_y)/(M/block)); 
err_stop_y=mod(err_start_y+err_duration,(M/block)); 
 
for x=1:block:N 
    for y=1:block:M 
        err=0; 
        if ( floor(x/block)==err_start_x ) 
            if ( floor(x/block)==err_stop_x ) 
                if ( floor(y/block)>=err_start_y & … 

floor(y/block)<=err_stop_y ) 
                    err=1; 
                end 
            elseif ( floor(y/block)>=err_start_y ) 
                err=1; 
            end 
        elseif ( floor(x/block)>err_start_x & … 

floor(x/block)<err_stop_x) 
            err=1; 
        elseif ( floor(x/block)==err_stop_x & … 

floor(y/block)<=err_stop_y) 
            err=1; 
        end 
         
        Gfaultfree(x:x+block-1,y:y+block-1)=… 

DCT_josh(g(x:x+block-1,y:y+block-1),block,0); 
        G(x:x+block-1,y:y+block-1)=… 

DCT_josh(g(x:x+block-1,y:y+block-1),block,err); 
    end 
end 
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for x=1:block:N 
    for y=1:block:M 
        h(x:x+block-1,y:y+block-1)=… 

IDCT_josh(G(x:x+block-1,y:y+block-1),block); 
    end 
end 
 
g_h=g-h; 
MSE=(1/(M*N))*(sum(sum(g_h.^2))), 
PSNR=10*log10((255^2)/MSE), 
 
figure(1); 
image(g); set(gcf,'Colormap',cmap,'Position',[25 525 500 450]); 
axis equal; 
title('Original Image'); 
 
figure(3); 
image(h); set(gcf,'Colormap',cmap,'Position',[550 525 500 450]); 
axis equal; 
title('Restored Image'); 
 
 
function G = DCT_josh(g,N,err) 
% Josh Snodgrass 
% 
% DCT Algorithm (square matrix) 
% G(u,v) = (2/N)*c(u)*c(v)*(sum(sum(g(m,n)* 
%          cos((2*m+1)*pi*u/(2*N))*cos((2*n+1)*pi*v/(2*N)); 
%  where 
%   u,v=0,1,2,...,N-1 
%   c(0)=1/sqrt(2) 
%   c(n)=1 
 
c=ones(1,N); c(1)=1/sqrt(2); 
 
maxG=N*255; % for 8-bit source images 
 
for u=1:N 
    for v=1:N 
        Gscale=(2/N)*c(u)*c(v); 
        Gsum=0; 
        for m=1:N 
            for n=1:N 
                Gsum=Gsum+g(m,n)*cos((2*m-1)*pi*… 

(u-1)/(2*N))*cos((2*n-1)*pi*(v-1)/(2*N)); 
            end 
        end 
        %G(u,v)=Gscale*Gsum; 
        % Rounding result to 32-bit fixed point format 
        % 8-bit source image --> DCT coefficients +/- 2040 
        % 16-bit source image --> DCT coefficients +/- 524,288 
        G(u,v)=(fix((10^6)*Gscale*Gsum))/(10^6); 

% 32-bit --> steps = 10^-6 
        %G(u,v)=128*(fix(Gscale*Gsum/128)); 

% 5-bit --> steps = 128 
    end 
end 
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if err 
    Gpower=sum(sum(abs(G))); 
    for u=1:N 
        for v=1:N 
            G(u,v)=2*(rand-0.5)*maxG; 
        end 
    end 
    Gpower2=sum(sum(abs(G))); 
    G=G./(Gpower2/Gpower); 
end 
 
if 0 %err 
    for u=1:N 
        for v=1:N 
            G(u,v)=(fix(0.0629*G(u,v))/0.0629); 

% 8-bit --> steps = 15.9 
            %G(u,v)=(fix(0.00784*G(u,v)))/0.00784; 

% 5-bit --> steps = 127.5 
        end 
    end 
end 
 
 
function g = IDCT_josh(G,N) 
% Josh Snodgrass 
% 
% Inverse-DCT Algorithm (square matrix) 
% g(m,n) = (2/N)*(sum(sum(c(u)*c(v)*G(u,v)* 
%          cos((2*m+1)*pi*u/(2*N))*cos((2*n+1)*pi*v/(2*N)); 
%  where 
%   m,n=0,1,2,...,N-1 
%   c(0)=1/sqrt(2) 
%   c(n)=1 
 
c=ones(1,N); c(1)=1/sqrt(2); 
 
for m=1:N 
    for n=1:N 
        gscale=(2/N); 
        gsum=0; 
        for u=1:N 
            for v=1:N 
                gsum=gsum+c(u)*c(v)*G(u,v)*cos((2*m-1)*pi* 

(u-1)/(2*N))*cos((2*n-1)*pi*(v-1)/(2*N)); 
            end 
        end 
        g(m,n)=gscale*gsum; 
    end 
end 
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